A015000 q-integers for q=-13.
1, -12, 157, -2040, 26521, -344772, 4482037, -58266480, 757464241, -9847035132, 128011456717, -1664148937320, 21633936185161, -281241170407092, 3656135215292197, -47529757798798560, 617886851384381281
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (-12,13).
Programs
-
Magma
I:=[1,-12]; [n le 2 select I[n] else -12*Self(n-1)+13*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 22 2012
-
Maple
a:=n->sum ((-13)^j, j=0..n-1): seq(a(n), n=0..20); # Zerinvary Lajos, Dec 16 2008
-
Mathematica
QBinomial[Range[20],1,-13] (* Harvey P. Dale, May 02 2012 *) LinearRecurrence[{-12, 13}, {1, -12}, 30] (* Vincenzo Librandi, Oct 22 2012 *)
-
PARI
for(n=1, 30, print1((1-(-13)^n)/14, ", ")) \\ G. C. Greubel, May 26 2018
-
Sage
[gaussian_binomial(n,1,-13) for n in range(1,18)] # Zerinvary Lajos, May 28 2009
Formula
a(n) = a(n-1) + q^(n-1) = (q^n - 1) / (q - 1), with q=-13.
a(n) = Sum_{j=0..n-1} (-13)^j. - Zerinvary Lajos, Dec 16 2008
G.f.: x/((1 - x)*(1 + 13*x)). - Vincenzo Librandi, Oct 22 2012
a(n) = -12*a(n-1) + 13*a(n-2). - Vincenzo Librandi, Oct 22 2012
From G. C. Greubel, May 26 2018: (Start)
a(n) = (1 - (-13)^n)/14.
E.g.f.: (exp(x) - exp(-13*x))/14. (End)
Extensions
Edited by N. J. A. Sloane, Jan 13 2009 at the suggestion of R. J. Mathar