A015001 q-factorial numbers for q=3.
1, 1, 4, 52, 2080, 251680, 91611520, 100131391360, 328430963660800, 3232089113385932800, 95424198983606279987200, 8452007576574959037306265600, 2245867453247498115393020895232000, 1790317944898228845164815929864036352000
Offset: 0
Links
Crossrefs
Programs
-
Magma
[n le 1 select 1 else (3^n-1)*Self(n-1)/2: n in [1..15]]; // Vincenzo Librandi, Oct 22 2012
-
Mathematica
RecurrenceTable[{a[1]==1, a[n]==((3^n - 1) * a[n-1])/2}, a, {n,15}] (* Vincenzo Librandi, Oct 27 2012 *) Table[QFactorial[n, 3], {n, 15}] (* Bruno Berselli, Aug 14 2013 *)
Formula
a(n) = Product_{k=1..n} (q^k - 1) / (q - 1).
a(0) = 1, a(n) = (3^n - 1)*a(n-1)/2. - Vincenzo Librandi, Oct 27 2012
a(n) = (Product_{i=0..n-1} (q^n-q^i))/((q-1)^n*q^binomial(n,2)) = A053290(n)/(A000079(n)*A047656(n)). - Geoffrey Critzer, Sep 07 2022
From Amiram Eldar, Jul 05 2025: (Start)
a(n) = Product_{k=1..n} A003462(k).
a(n) ~ c * 3^(n*(n+1)/2)/2^n, where c = A100220. (End)
Extensions
a(0)=1 prepended by Alois P. Heinz, Sep 08 2021
Comments