A015002 q-factorial numbers for q=4.
1, 1, 5, 105, 8925, 3043425, 4154275125, 22686496457625, 495586515116818125, 43304845277422684580625, 15136126045591163828042953125, 21161832960467051739150680807015625, 118345540457280742481284963098558216328125, 2647344887069536899904944217513732945696167890625
Offset: 0
Links
Crossrefs
Programs
-
Magma
[n le 1 select 1 else (4^n-1)*Self(n-1)/3: n in [1..15]]; // Vincenzo Librandi, Oct 22 2012
-
Mathematica
RecurrenceTable[{a[1]==1, a[n]==((4^n - 1) * a[n-1])/3}, a, {n, 15}] (* Vincenzo Librandi, Oct 27 2012 *) Table[QFactorial[n, 4], {n, 15}] (* Bruno Berselli, Aug 14 2013 *)
Formula
a(n) = Product_{k=1..n} (q^k - 1) / (q - 1) with q=4.
a(0) = 1, a(n) = (4^n-1)*a(n-1)/3. - Vincenzo Librandi, Oct 27 2012
From Amiram Eldar, Jul 05 2025: (Start)
a(n) = Product_{k=1..n} A002450(k).
a(n) ~ c * 2^(n*(n+1))/3^n, where c = A100221. (End)
Extensions
a(0)=1 prepended by Alois P. Heinz, Sep 08 2021