A069777
Array of q-factorial numbers n!_q, read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 3, 1, 1, 1, 24, 21, 4, 1, 1, 1, 120, 315, 52, 5, 1, 1, 1, 720, 9765, 2080, 105, 6, 1, 1, 1, 5040, 615195, 251680, 8925, 186, 7, 1, 1, 1, 40320, 78129765, 91611520, 3043425, 29016, 301, 8, 1, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 6, 21, 52, 105, 186, 301, ...
1, 24, 315, 2080, 8925, 29016, 77959, ...
1, 120, 9765, 251680, 3043425, 22661496, 121226245, ...
...
Columns q=0..11 are
A000012,
A000142,
A005329,
A015001,
A015002,
A015004,
A015005,
A015006,
A015007,
A015008,
A015009,
A015011.
-
A069777 := proc(n,k) local n1: mul(A104878(n1,k), n1=k..n-1) end: A104878 := proc(n,k): if k = 0 then 1 elif k=1 then n elif k>=2 then (k^(n-k+1)-1)/(k-1) fi: end: seq(seq(A069777(n,k), k=0..n), n=0..9); # Johannes W. Meijer, Aug 21 2011
nmax:=9: T(0,0):=1: for n from 1 to nmax do T(n,0):=1: T(n,1):= (n-1)! od: for q from 2 to nmax do for n from 0 to nmax do T(n+q,q) := product((q^k - 1)/(q - 1), k= 1..n) od: od: for n from 0 to nmax do seq(T(n,k), k=0..n) od; seq(seq(T(n,k), k=0..n), n=0..nmax); # Johannes W. Meijer, Aug 21 2011
# alternative Maple program:
T:= proc(n, k) option remember; `if`(n<2, 1,
T(n-1, k)*`if`(k=1, n, (k^n-1)/(k-1)))
end:
seq(seq(T(d-k, k), k=0..d), d=0..10); # Alois P. Heinz, Sep 08 2021
-
(* Returns the rectangular array *) Table[Table[QFactorial[n, q], {q, 0, 6}], {n, 0, 6}] (* Geoffrey Critzer, May 21 2017 *)
-
T(n,q)=prod(k=1, n, ((q^k - 1) / (q - 1))) \\ Andrew Howroyd, Feb 19 2018
A015001
q-factorial numbers for q=3.
Original entry on oeis.org
1, 1, 4, 52, 2080, 251680, 91611520, 100131391360, 328430963660800, 3232089113385932800, 95424198983606279987200, 8452007576574959037306265600, 2245867453247498115393020895232000, 1790317944898228845164815929864036352000
Offset: 0
-
[n le 1 select 1 else (3^n-1)*Self(n-1)/2: n in [1..15]]; // Vincenzo Librandi, Oct 22 2012
-
RecurrenceTable[{a[1]==1, a[n]==((3^n - 1) * a[n-1])/2}, a, {n,15}] (* Vincenzo Librandi, Oct 27 2012 *)
Table[QFactorial[n, 3], {n, 15}] (* Bruno Berselli, Aug 14 2013 *)
A015004
q-factorial numbers for q=5.
Original entry on oeis.org
1, 1, 6, 186, 29016, 22661496, 88515803376, 1728802155736656, 168827903320618878336, 82435457461295106532780416, 201258420458750640859769304304896, 2456767777551003294245070550498298923776, 149949204558598784020761783280669552547300269056
Offset: 0
-
[n le 1 select 1 else (5^n-1)*Self(n-1)/4: n in [1..15]]; // Vincenzo Librandi, Oct 25 2012
-
RecurrenceTable[{a[1]==1, a[n]==((5^n - 1)* a[n-1])/4}, a, {n, 15}] (* Vincenzo Librandi, Oct 25 2012 *)
Table[QFactorial[n, 5], {n, 15}] (* Bruno Berselli, Aug 14 2013 *)
-
a(n) = { my(q=5); prod(k=1, n, ((q^k - 1) / (q - 1))) } \\ Andrew Howroyd, Feb 18 2018
A015006
q-factorial numbers for q=7.
Original entry on oeis.org
1, 1, 8, 456, 182400, 510902400, 10017774259200, 1375009641495014400, 1321109263548409835520000, 8885253784030448738183147520000, 418310711031156574478261944188764160000, 137856159231156714984163673320892478249861120000
Offset: 0
-
[n le 1 select 1 else (7^n-1)*Self(n-1)/6: n in [1..15]]; // Vincenzo Librandi, Oct 25 2012
-
RecurrenceTable[{a[1]==1, a[n]==((7^n - 1) * a[n-1])/6}, a, {n, 15}] (* Vincenzo Librandi, Oct 25 2012 *)
Table[QFactorial[n, 7], {n, 15}] (* Bruno Berselli, Aug 14 2013 *)
A015007
q-factorial numbers for q=8.
Original entry on oeis.org
1, 1, 9, 657, 384345, 1799118945, 67375205371305, 20185139902805378865, 48378633136349277767794425, 927610024989668734297857360967425, 142287668466497494704440569679875994730825, 174605966461872393482359052970987514818406771638225
Offset: 0
-
[n le 1 select 1 else (8^n-1)*Self(n-1)/7: n in [1..15]]; // Vincenzo Librandi, Oct 26 2012
-
RecurrenceTable[{a[1]==1, a[n]==((8^n - 1) * a[n-1])/7}, a, {n, 15}] (* Vincenzo Librandi, Oct 26 2012 *)
Table[QFactorial[n, 8], {n, 15}] (* Bruno Berselli, Aug 14 2013 *)
A015008
q-factorial numbers for q=9.
Original entry on oeis.org
1, 1, 10, 910, 746200, 5507702200, 365876657146000, 218747042884536166000, 1177042838234827583459440000, 57001313848230245122464621625840000, 24843911488189148287648216529610193612000000, 97453533413342456299179976631323547842824103012000000
Offset: 0
-
[n le 1 select 1 else (9^n - 1)*Self(n-1)/8: n in [1..15]]; // Vincenzo Librandi, Oct 26 2012
-
RecurrenceTable[{a[1]==1, a[n]==((9^n - 1) * a[n-1])/8}, a, {n, 15}] (* Vincenzo Librandi, Oct 26 2012 *)
Table[QFactorial[n, 9], {n, 15}] (* Bruno Berselli, Aug 14 2013 *)
A015009
q-factorial numbers for q=10.
Original entry on oeis.org
1, 1, 11, 1221, 1356531, 15072415941, 1674711207620451, 1860790044610366931061, 20675444733360738721748118771, 2297271634742810443154153338805764581, 2552524038347870310755413660544832496799359491, 28361378203581611893021499527080870668821235178133404501
Offset: 0
-
[n le 1 select 1 else (10^n-1)*Self(n-1)/9: n in [1..15]]; // Vincenzo Librandi, Oct 26 2012
-
RecurrenceTable[{a[1]==1, a[n]==((10^n-1) * a[n-1])/9}, a, {n, 15}] (* Vincenzo Librandi, Oct 26 2012 *)
Table[QFactorial[n, 10], {n, 15}] (* Bruno Berselli, Aug 14 2013 *)
A015011
q-factorial numbers for q=11.
Original entry on oeis.org
1, 1, 12, 1596, 2336544, 37630041120, 6666387564654720, 12990902775831251994240, 278471536921607824648305285120, 65662131721505488121539650946349537280, 170310659060181679663863033233125976844488908800, 4859161865915056755501262525796512204608930674134393036800
Offset: 0
-
[n le 1 select 1 else (11^n-1)*Self(n-1)/10: n in [1..15]]; // Vincenzo Librandi, Oct 26 2012
-
RecurrenceTable[{a[1]==1, a[n]==((11^n - 1) * a[n-1])/10}, a, {n, 15}] (* Vincenzo Librandi, Oct 26 2012 *)
Table[QFactorial[n, 11], {n, 11}] (* Bruno Berselli, Aug 14 2013 *)
A015005
q-factorial numbers for q=6.
Original entry on oeis.org
1, 1, 7, 301, 77959, 121226245, 1131162092095, 63330372050122765, 21274128570193389587095, 42878835824239014254983869205, 518543838148941095553869851505328175, 37625235473766496167083515195884075739704925, 16380389585902052954270520869620904155598347770499975
Offset: 0
-
[n le 1 select 1 else (6^n-1)*Self(n-1)/5: n in [1..15]]; // Vincenzo Librandi, Oct 25 2012
-
RecurrenceTable[{a[1]==1, a[n]==((6^n - 1) * a[n-1])/5}, a, {n, 15}] (* Vincenzo Librandi, Oct 25 2012 *)
Table[QFactorial[n, 6], {n, 15}] (* Bruno Berselli, Aug 14 2013 *)
A347487
Irregular triangle read by rows: T(n, k) is the q-multinomial coefficient defined by the k-th partition of n in Abramowitz-Stegun order, evaluated at q = 4.
Original entry on oeis.org
1, 1, 5, 1, 21, 105, 1, 85, 357, 1785, 8925, 1, 341, 5797, 28985, 121737, 608685, 3043425, 1, 1365, 93093, 376805, 465465, 7912905, 33234201, 39564525, 166171005, 830855025, 4154275125, 1, 5461, 1490853, 24208613, 7454265, 508380873, 2057732105, 8642474841
Offset: 1
The number of subspace chains 0 < V_1 < V_2 < (F_4)^3 is 105 = T(3, (1, 1, 1)). There are 21 = A022168(3, 1) choices for a one-dimensional subspace V_1 and, for each of them, 5 = A022168(2, 1) extensions to a two-dimensional subspace V_2.
Triangle begins:
k: 1 2 3 4 5 6 7
--------------------------------------
n=1: 1
n=2: 1 5
n=3: 1 21 105
n=4: 1 85 357 1785 8925
n=5: 1 341 5795 28985 121737 608685 3043425
- R. P. Stanley, Enumerative Combinatorics (vol. 1), Cambridge University Press (1997), Section 1.3.
Showing 1-10 of 11 results.
Comments