A015004 q-factorial numbers for q=5.
1, 1, 6, 186, 29016, 22661496, 88515803376, 1728802155736656, 168827903320618878336, 82435457461295106532780416, 201258420458750640859769304304896, 2456767777551003294245070550498298923776, 149949204558598784020761783280669552547300269056
Offset: 0
Links
Crossrefs
Programs
-
Magma
[n le 1 select 1 else (5^n-1)*Self(n-1)/4: n in [1..15]]; // Vincenzo Librandi, Oct 25 2012
-
Mathematica
RecurrenceTable[{a[1]==1, a[n]==((5^n - 1)* a[n-1])/4}, a, {n, 15}] (* Vincenzo Librandi, Oct 25 2012 *) Table[QFactorial[n, 5], {n, 15}] (* Bruno Berselli, Aug 14 2013 *)
-
PARI
a(n) = { my(q=5); prod(k=1, n, ((q^k - 1) / (q - 1))) } \\ Andrew Howroyd, Feb 18 2018
Formula
a(n) = Product_{k=1..n} ((q^k - 1) / (q - 1)) where q = 5.
a(0) = 1, a(n) = (5^n-1)*a(n-1)/4. - Vincenzo Librandi, Oct 25 2012
From Amiram Eldar, Jul 05 2025: (Start)
a(n) = Product_{k=1..n} A003463(k).
a(n) ~ c * 5^(n*(n+1)/2)/4^n, where c = A100222. (End)
Extensions
a(0)=1 prepended by Alois P. Heinz, Sep 08 2021