cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015220 Even tetrahedral numbers.

Original entry on oeis.org

0, 4, 10, 20, 56, 84, 120, 220, 286, 364, 560, 680, 816, 1140, 1330, 1540, 2024, 2300, 2600, 3276, 3654, 4060, 4960, 5456, 5984, 7140, 7770, 8436, 9880, 10660, 11480, 13244, 14190, 15180, 17296, 18424, 19600, 22100, 23426, 24804, 27720, 29260, 30856, 34220, 35990
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,3,-3,0,-3,3,0,1,-1},{0,4,10,20,56,84,120,220,286,364},41] (* Ant King, Oct 19 2012 *)
    Select[Table[(Times@@(n+{0,1,2}))/6,{n,0,60}],EvenQ] (* Harvey P. Dale, Jan 22 2013 *)

Formula

From Ant King, Oct 19 2012: (Start)
a(n) = a(n-1) + 3*a(n-3) - 3*a(n-4) - 3*a(n-6) + 3*a(n-7) + a(n-9) - a(n-10).
a(n) = 64 + 3*a(n-3) - 3*a(n-6) + a(n-9).
G.f.: 2*x*(2+3*x+5*x^2+12*x^3+5*x^4+3*x^5+2*x^6) / ((1-x)^4*(1+x+x^2)^3).
Sum_{n>=1} 1/a(n) = 3/2*(1-log(2)). (End)
From Amiram Eldar, Mar 07 2022: (Start)
a(n) = A000292(A004772(n+1)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*log(2) - 15/2 + 9*sqrt(2)*log(sqrt(2)+1)/2. (End)

Extensions

More terms from Erich Friedman
a(0) prepended by Amiram Eldar, Mar 07 2022