A015220 Even tetrahedral numbers.
0, 4, 10, 20, 56, 84, 120, 220, 286, 364, 560, 680, 816, 1140, 1330, 1540, 2024, 2300, 2600, 3276, 3654, 4060, 4960, 5456, 5984, 7140, 7770, 8436, 9880, 10660, 11480, 13244, 14190, 15180, 17296, 18424, 19600, 22100, 23426, 24804, 27720, 29260, 30856, 34220, 35990
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,3,-3,0,-3,3,0,1,-1).
Programs
-
Mathematica
LinearRecurrence[{1,0,3,-3,0,-3,3,0,1,-1},{0,4,10,20,56,84,120,220,286,364},41] (* Ant King, Oct 19 2012 *) Select[Table[(Times@@(n+{0,1,2}))/6,{n,0,60}],EvenQ] (* Harvey P. Dale, Jan 22 2013 *)
Formula
From Ant King, Oct 19 2012: (Start)
a(n) = a(n-1) + 3*a(n-3) - 3*a(n-4) - 3*a(n-6) + 3*a(n-7) + a(n-9) - a(n-10).
a(n) = 64 + 3*a(n-3) - 3*a(n-6) + a(n-9).
G.f.: 2*x*(2+3*x+5*x^2+12*x^3+5*x^4+3*x^5+2*x^6) / ((1-x)^4*(1+x+x^2)^3).
Sum_{n>=1} 1/a(n) = 3/2*(1-log(2)). (End)
From Amiram Eldar, Mar 07 2022: (Start)
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*log(2) - 15/2 + 9*sqrt(2)*log(sqrt(2)+1)/2. (End)
Extensions
More terms from Erich Friedman
a(0) prepended by Amiram Eldar, Mar 07 2022