A015225 Odd hexagonal pyramidal numbers.
1, 7, 95, 161, 525, 715, 1547, 1925, 3417, 4047, 6391, 7337, 10725, 12051, 16675, 18445, 24497, 26775, 34447, 37297, 46781, 50267, 61755, 65941, 79625, 84575, 100647, 106425, 125077, 131747, 153171, 160797, 185185, 193831, 221375, 231105
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1).
Programs
-
Mathematica
LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,7,95,161,525,715,1547},36] (* Ant King, Oct 25 2012 *)
-
PARI
a(n)=(8*n-2*(-1)^n-7)*(1+(-1)^n-4*n)*(3+(-1)^n-4*n)/24 \\ Charles R Greathouse IV, Jul 30 2016
Formula
Odd numbers of the form n*(n+1)*(4n-1)/6.
From Ant King, Oct 25 2012: (Start)
a(n) = a(n-1) +3*a(n-2) -3*a(n-3) -3*a(n-4) +3*a(n-5) +a(n-6) -a(n-7).
a(n) = 3*a(n-2) -3*a(n-4) +a(n-6) +256.
a(n) = (8*n-2*(-1)^n-7)*(1+(-1)^n-4*n)*(3+(-1)^n-4*n)/24.
G.f.: x*(1+6*x+85*x^2+48*x^3+103*x^4+10*x^5+3*x^6) / ((1-x)^4*(1+x)^3). (End)
E.g.f.: (1/6)*(-9 - 6*x - 24*x^2 + 18*exp(x) + ( - 9 + 12*x + 36*x^2 + 32*x^3)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 30 2016
Extensions
More terms from Erich Friedman.