A015308 Gaussian binomial coefficient [ n,5 ] for q = -4.
1, -819, 894621, -901984419, 927257668701, -948584595081123, 971588061067577437, -994845394688060798883, 1018737244037427165087837, -1043182954580986851130914723, 1068220365220113899181567068253
Offset: 5
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 5..200
- Index entries for linear recurrences with constant coefficients, signature (-819,223860,14051520,-229232640,-858783744,1073741824).
Crossrefs
Programs
-
GAP
List([5..25], n-> (1 -205*(-4)^(n-4) +3485*(-4)^(2*n-7) -3485*(-4)^(3*n-9) +205*(-4)^(4*n-10) -(-4)^(5*n-10))/1274203125); # G. C. Greubel, Sep 21 2019
-
Magma
r:=5; q:=-4; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Aug 03 2016
-
Maple
seq((1 -205*(-4)^(n-4) +3485*(-4)^(2*n-7) -3485*(-4)^(3*n-9) +205*(-4)^(4*n-10) -(-4)^(5*n-10))/1274203125, n=5..25); # G. C. Greubel, Sep 21 2019
-
Mathematica
Table[QBinomial[n, 5, -4], {n, 5, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
-
PARI
a(n) = (1 -205*(-4)^(n-4) +3485*(-4)^(2*n-7) -3485*(-4)^(3*n-9) +205*(-4)^(4*n-10) -(-4)^(5*n-10))/1274203125; \\ G. C. Greubel, Sep 21 2019
-
Sage
[gaussian_binomial(n,5,-4) for n in range(5,16)] # Zerinvary Lajos, May 27 2009
Formula
a(n) = Product_{i=1..5} ((-4)^(n-i+1)-1)/((-4)^i-1), by definition. - Vincenzo Librandi, Aug 03 2016
G.f.: x^5/((1-x)*(1+4*x)*(1-16*x)*(1+64*x)*(1-256*x)*(1+1024*x)). - R. J. Mathar, Aug 04 2016
From G. C. Greubel, Sep 21 2019: (Start)
a(n) = (1 - 205*(-4)^(n-4) + 3485*(-4)^(2*n-7) - 3485*(-4)^(3*n-9) + 205*(-4)^(4*n-10) - (-4)^(5*n-10))/1274203125.
E.g.f.: exp(-1024*x)*(-1 + 13940*exp(960*x) - 839680*exp(1020*x) + 1048576*exp(1025*x) - 223040*exp(1040*x) + 205*exp(1280*x))/1336098816000000. (End)