cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A015112 Triangle of q-binomial coefficients for q=-4.

Original entry on oeis.org

1, 1, 1, 1, -3, 1, 1, 13, 13, 1, 1, -51, 221, -51, 1, 1, 205, 3485, 3485, 205, 1, 1, -819, 55965, -219555, 55965, -819, 1, 1, 3277, 894621, 14107485, 14107485, 894621, 3277, 1, 1, -13107, 14317213, -901984419, 3625623645, -901984419, 14317213, -13107, 1, 1
Offset: 0

Views

Author

Keywords

Comments

May be read as a symmetric triangular (T[n,k]=T[n,n-k]; k=0,...,n; n=0,1,...) or square array (A[n,r]=A[r,n]=T[n+r,r], read by antidiagonals). The diagonals of the former (or rows/columns of the latter) are A000012 (k=0), A014985 (k=1), A015253 (k=2), A015271, A015289, A015308, A015326, A015341, A015359, A015376, A015390 (k=10), A015408, A015425,... - M. F. Hasler, Nov 04 2012

Crossrefs

Cf. analog triangles for other q: A015109 (q=-2), A015110 (q=-3), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15); A022166 (q=2), A022167 (q=3), A022168, A022169, A022170, A022171, A022172, A022173, A022174 (q=10), A022175, A022176, A022177, A022178, A022179, A022180, A022181, A022182, A022183, A022184 (q=20), A022185, A022186, A022187, A022188. - M. F. Hasler, Nov 04 2012

Programs

  • Mathematica
    Flatten[Table[QBinomial[n,m,-4],{n,0,10},{m,0,n}]] (* Harvey P. Dale, Jun 10 2015 *)
  • PARI
    T015112(n, k, q=-4)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012

A015359 Gaussian binomial coefficient [ n,8 ] for q=-4.

Original entry on oeis.org

1, 52429, 3665049245, 236497451900765, 15559876852907031645, 1018737244037427165087837, 66780267552779682073190144093, 4376244513647234644625387176712285, 286805936690898816904813999400193022045
Offset: 8

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. A015356, A015357, A015360, A015361, A015363, A015364, A015365, A015367 A015368, A015369, A015370 (r=8, q=-2..-13). q=-4 integers/coefficients: A014985 (r=1), A015253 (r=2), A015271 (r=3), A015289 (r=4), A015308 (r=5), A015326 (r=6), A015341 (r=7), A015376 (r=9), A015390 (r=10), A015408 (r=11), A015425 (r=12). - M. F. Hasler, Nov 03 2012

Programs

  • Magma
    r:=8; q:=-4; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
    
  • Mathematica
    Table[QBinomial[n, 8, -4], {n, 8, 20}] (* Vincenzo Librandi, Nov 02 2012 *)
  • PARI
    A015359(n,r=8,q=-4)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,8,-4) for n in range(8,16)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..8} ((-4)^(n-i+1)-1)/((-4)^i-1). - M. F. Hasler, Nov 03 2012
G.f.: -x^8 / ( (x-1)*(16384*x+1)*(4096*x-1)*(256*x-1)*(65536*x-1)*(64*x+1)*(4*x+1)*(16*x-1)*(1024*x+1) ). - R. J. Mathar, Sep 02 2016

A015306 Gaussian binomial coefficient [ n,5 ] for q = -3.

Original entry on oeis.org

1, -182, 49777, -11662040, 2869444942, -694405675964, 168973319623174, -41041673208656120, 9974653139743515223, -2423717068608654822146, 588973263031690760850991, -143119691677080990521708240
Offset: 5

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Gaussian binomial coefficient [n, k]_q for q = -3: A015251 (k = 2), A015268 (k = 3), A015288 (k = 4), this sequence (k = 5), A015324 (k = 6), A015340 (k = 7), A015357 (k = 8), A015375 (k = 9), A015388 (k = 10).
Gaussian binomial coefficients [n,5]: A015305 (q=-2), this sequence (q=-3), A015308 (q=-4), A015309 (q=-5), A015310 (q=-6), A015312 (q=-7), A015313 (q=-8), A015315 (q=-9), A015316 (q=-10), A015317 (q=-11), A015319 (q=-12), A015321 (q=-13).

Programs

  • GAP
    List([5..25], n-> (1 -61*(-3)^(n-4) +610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) +61*(-3)^(4*n-10) -(-3)^(5*n-10))/17489920); # G. C. Greubel, Sep 21 2019
  • Magma
    [(1 - 61*(-3)^(n-4) + 610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) + 61*(-3)^(4*n-10) - (-3)^(5*n-10))/17489920: n in [5..25]]; // G. C. Greubel, Sep 21 2019
    
  • Maple
    seq((1 - 61*(-3)^(n-4) + 610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) + 61*(-3)^(4*n-10) - (-3)^(5*n-10))/17489920, n=5..25); # G. C. Greubel, Sep 21 2019
  • Mathematica
    Table[QBinomial[n, 5, -3], {n, 5, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
  • PARI
    a(n) = (1 - 61*(-3)^(n-4) + 610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) + 61*(-3)^(4*n-10) - (-3)^(5*n-10))/17489920 \\ G. C. Greubel, Sep 21 2019
    
  • Sage
    [gaussian_binomial(n,5,-3) for n in range(5,17)] # Zerinvary Lajos, May 27 2009
    

Formula

G.f.: x^5/((1-x)*(1+3*x)*(1-9*x)*(1+27*x)*(1-81*x)*(1+243*x)). - R. J. Mathar, Aug 03 2016
From G. C. Greubel, Sep 21 2019: (Start)
a(n) = (1 - 61*(-3)^(n-4) + 610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) + 61*(-3)^(4*n-10) - (-3)^(5*n-10))/17489920.
E.g.f.: exp(-243*x)*(-1 +1830*exp(216*x) -44469*exp(240*x) +59049*exp(244 *x) -16470*exp(252*x) +61*exp(324*x))/1032762286080. (End)
G.f. with offset 0: exp(Sum_{n >= 1} A015518(6*n)/A015518(n) * (-x)^n/n) = 1 - 182*x + 49777*x^2 - .... - Peter Bala, Jun 29 2025
Showing 1-3 of 3 results.