A015363 Gaussian binomial coefficient [ n,8 ] for q=-7.
1, 5044201, 29684623509101, 170628488227082949701, 984049129188697468764456303, 5672509895284807570626050787828903, 32701168672146988445875611556849499108603, 188515500954498588979354521825234382842445990403
Offset: 8
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 8..100
Crossrefs
Programs
-
Magma
r:=8; q:=-7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
-
Mathematica
QBinomial[Range[8,20],8,-7] (* Harvey P. Dale, May 09 2012 *) Table[QBinomial[n, 8, -7], {n, 8, 19}] (* Vincenzo Librandi, Nov 03 2012 *)
-
PARI
A015363(n, r=8, q=-7)=prod(i=1, r, (q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
-
Sage
[gaussian_binomial(n,8,-7) for n in range(8,15)] # Zerinvary Lajos, May 25 2009
Formula
a(n) = Product_{i=1..8} ((-7)^(n-i+1)-1)/((-7)^i-1). - M. F. Hasler, Nov 03 2012