cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A015370 Gaussian binomial coefficient [ n,8 ] for q=-13.

Original entry on oeis.org

1, 757464241, 621564749363392901, 506798783502833908602716981, 413425812255544017749839936272484623, 337243227617163445881817693983677965955870943, 275099718210633054941121644140453635236773122223471523
Offset: 8

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,8] for q=-2..-12: A015356, A015357, A015359, A015360, A015361, A015363, A015364, A015365, A015367, A015368, A015369. - M. F. Hasler, Nov 03 2012
Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015286 (r=3), A015303 (r=4), A015321 (r=5), A015337 (r=6), A015355 (r=7), A015385 (r=9), A015402 (r=10), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012

Programs

  • Magma
    r:=8; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
    
  • Mathematica
    Table[QBinomial[n, 8, -13], {n, 8, 14}] (* Vincenzo Librandi, Nov 03 2012 *)
  • PARI
    A015370(n,r=8,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,8,-13) for n in range(8,14)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..8} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012

A015357 Gaussian binomial coefficient [ n,8 ] for q=-3.

Original entry on oeis.org

1, 4921, 36321901, 229798289941, 1526550040078063, 9974653139743515223, 65533580739687859229563, 429769342296322230713871283, 2820146424148466477944423359046, 18502040831058043147238631145734166
Offset: 8

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,8] for q=-2..-13: A015356, A015359, A015360, A015361, A015363, A015364, A015365, A015367, A015368, A015369, A015370. - M. F. Hasler, Nov 03 2012
Gaussian binomial coefficient [n, k]_q for q = -3: A015251 (k = 2), A015268 (k = 3), A015288 (k = 4), A015306 (k = 5), A015324 (k = 6), A015340 (k = 7), this sequence (k = 8), A015375 (k = 9), A015388 (k = 10).

Programs

  • Magma
    r:=8; q:=-3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 02 2012
    
  • Mathematica
    Table[QBinomial[n, 8, -3], {n, 8, 20}] (* Vincenzo Librandi, Nov 02 2012 *)
  • PARI
    A015357(n, r=8, q=-3)=prod(i=1, r, (1-q^(n-i+1))/(1-q^i)) \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,8,-3) for n in range(8,18)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..8} ((-3)^(n-i+1)-1)/((-3)^i-1). - M. F. Hasler, Nov 03 2012
G.f.: -x^8 / ( (x-1)*(27*x+1)*(81*x-1)*(729*x-1)*(9*x-1)*(2187*x+1)*(3*x+1)*(6561*x-1)*(243*x+1) ). - R. J. Mathar, Sep 02 2016
G.f. with offset 0: exp(Sum_{n >= 1} A015518(9*n)/A015518(n) * x^n/n) = 1 + 4921*x + 36321901*x^2 + .... - Peter Bala, Jun 29 2025

A015117 Triangle of q-binomial coefficients for q=-7.

Original entry on oeis.org

1, 1, 1, 1, -6, 1, 1, 43, 43, 1, 1, -300, 2150, -300, 1, 1, 2101, 105050, 105050, 2101, 1, 1, -14706, 5149551, -35927100, 5149551, -14706, 1, 1, 102943, 252313293, 12328144851, 12328144851, 252313293, 102943, 1, 1, -720600, 12363454300
Offset: 0

Views

Author

Keywords

Comments

May be read as a symmetric triangular (T[n,k]=T[n,n-k]; k=0,...,n; n=0,1,...) or square array (A[n,r]=A[r,n]=T[n+r,r], read by antidiagonals). The diagonals of the former (or rows/columns of the latter) are A000012 (k=0), A014989 (k=1), A015258 (k=2), A015275, A015293, A015312, A015330, A015346, A015363, A015379, A015393 (k=10), A015411, A015430,... - M. F. Hasler, Nov 04 2012

Crossrefs

Cf. analog triangles for negative q=-2,...,-15: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15);
analog triangles for positive q=2,...,24: A022166 (q=2), A022167 (q=3), A022168, A022169, A022170, A022171, A022172, A022173, A022174 (q=10), A022175, A022176, A022177, A022178, A022179, A022180, A022181, A022182, A022183, A022184 (q=20), A022185, A022186, A022187, A022188. - M. F. Hasler, Nov 04 2012

Programs

  • Mathematica
    Flatten[Table[QBinomial[n,m,-7],{n,0,10},{m,0,n}]] (* Harvey P. Dale, Aug 08 2012 *)
  • PARI
    T015117(n, k, q=-7)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012

A015356 Gaussian binomial coefficient [ n,8 ] for q=-2.

Original entry on oeis.org

1, 171, 58311, 13275471, 3624203583, 899790907743, 233988483199263, 59438516325245343, 15275698695588053151, 3902985682508407194271, 1000137219716325891620511, 255910660218571393553843871
Offset: 8

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,8] for q=-3..-13: A015357, A015359, A015360, A015361, A015363, A015364, A015365, A015367, A015368, A015369, A015370. - M. F. Hasler, Nov 03 2012
Diagonal k=8 of the triangular array A015109. See there for further references and programs. - M. F. Hasler, Nov 04 2012

Programs

  • Magma
    r:=8; q:=-2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 02 2012
    
  • Mathematica
    Table[QBinomial[n, 8, -2], {n, 8, 20}] (* Vincenzo Librandi, Nov 02 2012 *)
  • PARI
    A015356(n, r=8, q=-2)=prod(i=1, r, (q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,8,-2) for n in range(8,20)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..8} ((-2)^(n-i+1)-1)/((-2)^i-1). - M. F. Hasler, Nov 03 2012
G.f.: -x^8 / ( (x-1)*(64*x-1)*(128*x+1)*(2*x+1)*(8*x+1)*(32*x+1)*(16*x-1)*(4*x-1)*(256*x-1) ). - R. J. Mathar, Sep 02 2016

A015359 Gaussian binomial coefficient [ n,8 ] for q=-4.

Original entry on oeis.org

1, 52429, 3665049245, 236497451900765, 15559876852907031645, 1018737244037427165087837, 66780267552779682073190144093, 4376244513647234644625387176712285, 286805936690898816904813999400193022045
Offset: 8

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. A015356, A015357, A015360, A015361, A015363, A015364, A015365, A015367 A015368, A015369, A015370 (r=8, q=-2..-13). q=-4 integers/coefficients: A014985 (r=1), A015253 (r=2), A015271 (r=3), A015289 (r=4), A015308 (r=5), A015326 (r=6), A015341 (r=7), A015376 (r=9), A015390 (r=10), A015408 (r=11), A015425 (r=12). - M. F. Hasler, Nov 03 2012

Programs

  • Magma
    r:=8; q:=-4; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
    
  • Mathematica
    Table[QBinomial[n, 8, -4], {n, 8, 20}] (* Vincenzo Librandi, Nov 02 2012 *)
  • PARI
    A015359(n,r=8,q=-4)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,8,-4) for n in range(8,16)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..8} ((-4)^(n-i+1)-1)/((-4)^i-1). - M. F. Hasler, Nov 03 2012
G.f.: -x^8 / ( (x-1)*(16384*x+1)*(4096*x-1)*(256*x-1)*(65536*x-1)*(64*x+1)*(4*x+1)*(16*x-1)*(1024*x+1) ). - R. J. Mathar, Sep 02 2016

A015360 Gaussian binomial coefficient [ n,8 ] for q=-5.

Original entry on oeis.org

1, 325521, 132454820421, 51329529054158421, 20082729571968536374671, 7842306707330337276457324671, 3063597127265150338968694860387171, 1196702310087594273181943625299134137171, 467463036580276600555969910576099571466559046
Offset: 8

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,8] for q=-2..-13: A015356, A015357, A015359, A015361, A015363, A015364, A015365, A015367, A015368, A015369, A015370. - M. F. Hasler, Nov 03 2012

Programs

  • Magma
    r:=8; q:=-5; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
    
  • Mathematica
    Table[QBinomial[n, 8, -5], {n, 8, 20}] (* Vincenzo Librandi, Nov 03 2012 *)
  • PARI
    A015360(n,r=8,q=-5)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,8,-5) for n in range(8,16)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..8} ((-5)^(n-i+1)-1)/((-5)^i-1). - M. F. Hasler, Nov 03 2012
G.f.: -x^8 / ( (x-1)*(5*x+1)*(390625*x-1)*(25*x-1)*(625*x-1)*(78125*x+1)*(125*x+1)*(15625*x-1)*(3125*x+1) ). - R. J. Mathar, Sep 02 2016

A015361 Gaussian binomial coefficient [ n,8 ] for q=-6.

Original entry on oeis.org

1, 1439671, 2487182817955, 4158260859792814555, 6989674736616919292088715, 11738459947705882553575280369515, 19716527736890127515275338116221320235, 33116077152651051199781730118147946460139435, 55622326158904300663023790195853299389540017396395
Offset: 8

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,8] for q=-2..-13: A015356, A015357, A015359, A015360, A015363, A015364, A015365, A015367, A015368, A015369, A015370. - M. F. Hasler, Nov 03 2012

Programs

  • Magma
    r:=8; q:=-6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
    
  • Mathematica
    Table[QBinomial[n, 8, -6], {n, 8, 19}] (* Vincenzo Librandi, Nov 03 2012 *)
  • PARI
    A015361(n, r=8, q=-6)=prod(i=1, r, (q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,8,-6) for n in range(8,15)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..8} ((-6)^(n-i+1)-1)/((-6)^i-1). - M. F. Hasler, Nov 03 2012
G.f.: -x^8 / ( (x-1)*(279936*x+1)*(216*x+1)*(36*x-1)*(7776*x+1)*(1296*x-1)*(6*x+1)*(46656*x-1)*(1679616*x-1) ). - R. J. Mathar, Sep 02 2016

A015364 Gaussian binomial coefficient [ n,8 ] for q=-8.

Original entry on oeis.org

1, 14913081, 254171409198201, 4255976180162154314361, 71420868399845502303592335993, 1198206769685258176958937686297856633, 20102650473193049559156865045854634505718393
Offset: 8

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,8] for q=-2..-13: A015356, A015357, A015359, A015360, A015361, A015363, A015365, A015367, A015368, A015369, A015370. - M. F. Hasler, Nov 03 2012

Programs

  • Magma
    r:=8; q:=-8; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
    
  • Mathematica
    Table[QBinomial[n, 8, -8], {n, 8, 15}] (* Vincenzo Librandi, Nov 03 2012 *)
  • PARI
    A015364(n, r=8, q=-8)=prod(i=1, r, (q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,8,-8) for n in range(8,15)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..8} ((-8)^(n-i+1)-1)/((-8)^i-1). - M. F. Hasler, Nov 03 2012

A015365 Gaussian binomial coefficient [ n,8 ] for q=-9.

Original entry on oeis.org

1, 38742049, 1688564650965445, 72587599955185580267365, 3125134483161392104770081009295, 134524513999723596604019036560420619887, 5790850118312580284352508983888376537699322083
Offset: 8

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,8] for q=-2..-13: A015356, A015357, A015359, A015360, A015361, A015363, A015364, A015367, A015368, A015369, A015370. - M. F. Hasler, Nov 03 2012

Programs

  • Magma
    r:=8; q:=-9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
    
  • Mathematica
    Table[QBinomial[n, 8, -9], {n, 8, 15}] (* Vincenzo Librandi, Nov 03 2012 *)
  • PARI
    A015365(n, r=8, q=-9)=prod(i=1, r, (q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,8,-9) for n in range(8,14)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..8} ((-9)^(n-i+1)-1)/((-9)^i-1). - M. F. Hasler, Nov 03 2012

A015367 Gaussian binomial coefficient [ n,8 ] for q=-10.

Original entry on oeis.org

1, 90909091, 9182736463728191, 917356290091909926537191, 91744803489448201844894398447191, 9174388605059687035653977786959679347191, 917439777945737474914267633276565557306870347191
Offset: 8

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,8] for q=-2..-13: A015356, A015357, A015359, A015360, A015361, A015363, A015364, A015365, A015368, A015369, A015370. - M. F. Hasler, Nov 03 2012

Programs

  • Magma
    r:=8; q:=-10; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
    
  • Mathematica
    Table[QBinomial[n, 8, -10], {n, 8, 14}] (* Vincenzo Librandi, Nov 03 2012 *)
  • PARI
    A015367(n,r=8,q=-10)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,8,-10) for n in range(8,14)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..8} ((-10)^(n-i+1)-1)/((-10)^i-1). - M. F. Hasler, Nov 03 2012
Showing 1-10 of 12 results. Next