cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015424 Gaussian binomial coefficient [ n,12 ] for q=-3.

Original entry on oeis.org

1, 398581, 238300021051, 122119467087816511, 65710531328480659504924, 34778150788062009177434607244, 18507923283033747485964552371646724, 9831373896055842251635498188040677794164
Offset: 12

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Programs

  • Magma
    r:=12; q:=-3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 06 2012
  • Mathematica
    QBinomial[Range[12,20],12,-3] (* Harvey P. Dale, Dec 18 2011 *)
    Table[QBinomial[n, 12, -3], {n, 12, 20}] (* Vincenzo Librandi, Nov 06 2012 *)
  • Sage
    [gaussian_binomial(n,12,-3) for n in range(12,20)] # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = Product_{i=1..12} ((-3)^(n-i+1)-1)/((-3)^i-1) (by definition). - Vincenzo Librandi, Nov 06 2012