A015451 a(n) = 6*a(n-1) + a(n-2) for n > 1, with a(0) = a(1) = 1.
1, 1, 7, 43, 265, 1633, 10063, 62011, 382129, 2354785, 14510839, 89419819, 551029753, 3395598337, 20924619775, 128943316987, 794584521697, 4896450447169, 30173287204711, 185936173675435, 1145790329257321
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (6,1).
Programs
-
Magma
[n le 2 select 1 else 6*Self(n-1) + Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 08 2012
-
Maple
a[0]:=1: a[1]:=1: for n from 2 to 26 do a[n]:=6*a[n-1]+a[n-2] od: seq(a[n], n=0..20); # Zerinvary Lajos, Jul 26 2006
-
Mathematica
LinearRecurrence[{6, 1}, {1, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *) CoefficientList[Series[(1-5*x)/(1-6*x-x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 19 2017 *)
-
PARI
x='x+O('x^30); Vec((1-5*x)/(1-6*x-x^2)) \\ G. C. Greubel, Dec 19 2017
Formula
a(n) = Sum_{k=0..n} 5^k * A055830(n, k). - Philippe Deléham, Oct 18 2006
G.f.: (1-5*x)/(1-6*x-x^2). - Philippe Deléham, Nov 20 2008
For n >= 2, a(n) = F_n(6) + F_(n+1)(6), where F_n(x) is Fibonacci polynomial (cf. A049310): F_n(x) = Sum_{i = 0..floor((n-1)/2)} C(n-i-1,i) * x^(n-2*i-1). - Vladimir Shevelev, Apr 13 2012
a(n) = Sum_{k=0..n} A046854(n-1,k)*6^k. - R. J. Mathar, Feb 14 2024
Comments