cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015453 Generalized Fibonacci numbers.

Original entry on oeis.org

1, 1, 8, 57, 407, 2906, 20749, 148149, 1057792, 7552693, 53926643, 385039194, 2749201001, 19629446201, 140155324408, 1000716717057, 7145172343807, 51016923123706, 364263634209749, 2600862362591949, 18570300172353392
Offset: 0

Views

Author

Keywords

Comments

Row m=7 of A135597.
For n >= 1, row sums of triangle for numbers 7^k*C(m,k) with duplicated diagonals. - Vladimir Shevelev, Apr 13 2012
For n >= 1, a(n) equals the numbers of words of length n-1 on alphabet {0,1,2,3,5,6,7} containing no subwords ii, (i=0,1,...,6). - Milan Janjic, Jan 31 2015

Crossrefs

Row m=7 of A135597.

Programs

  • Magma
    [n le 2 select 1 else 7*Self(n-1) + Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 08 2012
    
  • Mathematica
    LinearRecurrence[{7, 1}, {1, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *)
    CoefficientList[Series[(1-6*x)/(1-7*x-x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-6*x)/(1-7*x-x^2)) \\ G. C. Greubel, Dec 19 2017
    
  • Sage
    [lucas_number1(n+1, 7, -1) - 6*lucas_number1(n, 7, -1) for n in (0..30)] # G. C. Greubel, Dec 24 2021

Formula

a(n) = 7*a(n-1) + a(n-2).
a(n) = Sum_{k=0..n} 6^k*A055830(n,k). - Philippe Deléham, Oct 18 2006
G.f.: (1-6*x)/(1-7*x-x^2). - Philippe Deléham, Nov 20 2008
For n >= 2, a(n) = F_(n)(7) + F_(n+1)(7), where F_(n)(x) is Fibonacci polynomial (cf. A049310): F_(n)(x) = Sum_{i=0..floor((n-1)/2)} C(n-i-1,i)*x^(n-2*i-1). - Vladimir Shevelev, Apr 13 2012
a(n) = A054413(n) - 6*A054413(n-1). - R. J. Mathar, Jul 06 2012
a(n) = Sum_{k=0..n} A046854(n-1,k)*7^k. - R. J. Mathar, Feb 14 2024