A015455 a(n) = 9*a(n-1) + a(n-2) for n>1; a(0) = a(1) = 1.
1, 1, 10, 91, 829, 7552, 68797, 626725, 5709322, 52010623, 473804929, 4316254984, 39320099785, 358197153049, 3263094477226, 29726047448083, 270797521509973, 2466903741037840, 22472931190850533
Offset: 0
References
- R. K. Guy, "A further family of sequences", SeqFan mailing list (www.seqfan.eu), Jun 13 2008
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (9,1).
Crossrefs
Row m=9 of A135597.
Programs
-
Magma
[n le 2 select 1 else 9*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 01 2015
-
Mathematica
CoefficientList[Series[(1 - 8*x)/(1 - 9*x - x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{9,1}, {1,1}, 50] (* G. C. Greubel, Dec 19 2017 *)
-
PARI
a(n) = polcoeff((1-(O(x^n)+8)*x)/(1-9*x-x^2),n) \\ M. F. Hasler, Jun 14 2008
Formula
G.f.: (1 - 8*x)/(1 - 9*x - x^2). - M. F. Hasler, Jun 14 2008
a(n) = Sum_{k, 0<=k<=n} 8^k*A055830(n,k). - Philippe Deléham, Oct 18 2006
a(n) = round(1/2*(9/2 - 1/2*sqrt(85))^n + 7/170*sqrt(85)*(9/2 - 1/2*sqrt(85))^n - 7/170*sqrt(85)*(9/2 + 1/2*sqrt(85))^n + 1/2*(9/2 + 1/2*sqrt(85))^n). - Alexander R. Povolotsky, Jun 13 2008
For n>=2, a(n)=F_n(9)+F_(n+1)(9), where F_n(x) is Fibonacci polynomial (cf.A049310): F_n(x) = Sum_{i=0,...,floor((n-1)/2)} C(n-i-1,i)*x^(n-2*i-1). - Vladimir Shevelev, Apr 13 2012
Extensions
Edited by M. F. Hasler, Jun 14 2008
Comments