cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015457 Generalized Fibonacci numbers.

Original entry on oeis.org

1, 1, 12, 133, 1475, 16358, 181413, 2011901, 22312324, 247447465, 2744234439, 30434026294, 337518523673, 3743137786697, 41512034177340, 460375513737437, 5105642685289147, 56622445051918054, 627952538256387741, 6964100365872183205, 77233056562850402996
Offset: 0

Views

Author

Keywords

Comments

For n>=1, row sums of triangle for numbers 11^k*binomial(m,k) with duplicated diagonals. - Vladimir Shevelev, Apr 13 2012
For n>=1, a(n) equals the numbers of words of length n-1 on alphabet {0,1,...,11} containing no subwords ii, (i=0,1,...,10). - Milan Janjic, Jan 31 2015

Crossrefs

Row m=11 of A135597.

Programs

  • Magma
    [n le 2 select 1 else 11*Self(n-1) + Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 08 2012
    
  • Mathematica
    LinearRecurrence[{11, 1}, {1, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *)
    CoefficientList[Series[(1-10*x)/(1-11*x-x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    x='x+O('x^30); Vec((1-10*x)/(1-11*x-x^2)) \\ G. C. Greubel, Dec 19 2017

Formula

a(n) = 11*a(n-1) + a(n-2).
a(n) = Sum_{k=0..n} 10^k*A055830(n,k). - Philippe Deléham, Oct 18 2006
G.f.: (1-10*x)/(1-11*x-x^2). - Philippe Deléham, Nov 21 2008
For n>=2, a(n) = F_n(11)+F_(n+1)(11), where F_n(x) is Fibonacci polynomial (cf. A049310): F_n(x) = Sum_{i=0..floor((n-1)/2)} binomial(n-i-1,i)*x^(n-2*i-1). - Vladimir Shevelev, Apr 13 2012
a(n) = (F(5*n-5) + F(5*n))/5 for F(n) the Fibonacci sequence A000045(n). - Greg Dresden, Aug 22 2021