A015532 a(n) = 4*a(n-1) + 7*a(n-2).
0, 1, 4, 23, 120, 641, 3404, 18103, 96240, 511681, 2720404, 14463383, 76896360, 408829121, 2173591004, 11556167863, 61439808480, 326652408961, 1736688295204, 9233320043543, 49090098240600, 260993633267201, 1387605220753004, 7377376315882423
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,7).
Programs
-
Magma
[n le 2 select n-1 else 4*Self(n-1)+7*Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Nov 12 2012
-
Mathematica
a[n_]:=(MatrixPower[{{1,2},{1,-5}},n].{{1},{1}})[[2,1]]; Table[Abs[a[n]],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *) LinearRecurrence[{4, 7}, {0, 1}, 30] (* Vincenzo Librandi, Nov 12 2012 *)
-
PARI
x='x+O('x^30); concat([0], Vec(x/(1-4*x-7*x^2))) \\ G. C. Greubel, Jan 01 2018
-
Sage
[lucas_number1(n,4,-7) for n in range(0, 21)]# Zerinvary Lajos, Apr 23 2009
Formula
From R. J. Mathar, Apr 29 2008: (Start)
O.g.f.: x/(1 - 4*x - 7*x^2).
a(n) = -7^n*(A^n - B^n)/(2*sqrt(11)) where A = -1/(2+sqrt(11)) and B = 1/(sqrt(11)-2). (End)
Comments