A015534 Expansion of x/(1 - 4*x - 11*x^2).
0, 1, 4, 27, 152, 905, 5292, 31123, 182704, 1073169, 6302420, 37014539, 217384776, 1276699033, 7498028668, 44035804035, 258621531488, 1518879970337, 8920356727716, 52389106584571, 307680350343160
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,11).
Programs
-
Magma
I:=[0, 1]; [n le 2 select I[n] else 4*Self(n-1)+11*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 19 2012
-
Mathematica
Join[{a=0,b=1},Table[c=4*b+11*a;a=b;b=c,{n,40}]] (* Vladimir Joseph Stephan Orlovsky, Mar 29 2011 *) LinearRecurrence[{4,11},{0,1},30] (* Vincenzo Librandi, Jun 19 2012 *)
-
PARI
x='x+O('x^30); concat([0], Vec(x/(1-4*x-11*x^2))) \\ G. C. Greubel, Jan 01 2018
-
Sage
[lucas_number1(n,4,-11) for n in range(0, 20)] # Zerinvary Lajos, Apr 23 2009
Formula
a(n) = 4*a(n-1) + 11*a(n-2).