A015535 Expansion of x/(1 - 5*x - 2*x^2).
0, 1, 5, 27, 145, 779, 4185, 22483, 120785, 648891, 3486025, 18727907, 100611585, 540513739, 2903791865, 15599986803, 83807517745, 450237562331, 2418802847145, 12994489360387, 69810052496225, 375039241201899, 2014816311001945, 10824160037413523
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Wikipedia, Lucas sequence: Specific names.
- Index entries for linear recurrences with constant coefficients, signature (5,2).
Crossrefs
Cf. A201002 (prime subsequence).
Programs
-
Magma
[n le 2 select n-1 else 5*Self(n-1)+2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 12 2012
-
Mathematica
LinearRecurrence[{5, 2}, {0, 1}, 30] (* Vincenzo Librandi, Nov 12 2012 *)
-
PARI
x='x+O('x^30); concat([0], Vec(x/(1-5*x-2*x^2))) \\ G. C. Greubel, Jan 01 2018
-
Sage
[lucas_number1(n,5,-2) for n in range(0, 22)] # Zerinvary Lajos, Apr 24 2009
Formula
a(n) = 5*a(n-1) + 2*a(n-2) with n > 1, a(0)=0, a(1)=1.
Comments