A015537 Expansion of x/(1 - 5*x - 4*x^2).
0, 1, 5, 29, 165, 941, 5365, 30589, 174405, 994381, 5669525, 32325149, 184303845, 1050819821, 5991314485, 34159851709, 194764516485, 1110461989261, 6331368012245, 36098688018269, 205818912140325, 1173489312774701, 6690722212434805
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Lucyna Trojnar-Spelina and Iwona Włoch, On Generalized Pell and Pell-Lucas Numbers, Iranian Journal of Science and Technology, Transactions A: Science (2019), 1-7.
- Index entries for linear recurrences with constant coefficients, signature (5,4).
Crossrefs
Programs
-
GAP
a:=[0,1];; for n in [3..30] do a[n]:=5*a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, Dec 26 2019
-
Magma
[n le 2 select n-1 else 5*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 12 2012
-
Maple
seq( simplify((2/I)^(n-1)*ChebyshevU(n-1, 5*I/4)), n=0..20); # G. C. Greubel, Dec 26 2019
-
Mathematica
LinearRecurrence[{5,4}, {0,1}, 30] (* Vincenzo Librandi, Nov 12 2012 *) Table[2^(n-1)*Fibonacci[n, 5/2], {n, 0, 30}] (* G. C. Greubel, Dec 26 2019 *)
-
PARI
x='x+O('x^30); concat([0], Vec(x/(1-5*x-4*x^2))) \\ G. C. Greubel, Jan 01 2018
-
Sage
[lucas_number1(n,5,-4) for n in range(0, 22)] # Zerinvary Lajos, Apr 24 2009
Formula
a(n) = 5*a(n-1) + 4*a(n-2).
a(n) = Sum_{k=0..floor((n-1)/2)} C(n-k-1, k)*4^k*5^(n-2*k-1). - Paul Barry, Apr 23 2005
a(n) = Sum_{k=0..(n-1)} A122690(k). - Alexander Adamchuk, Nov 03 2006
a(n) = 2^(n-1)*Fibonacci(n, 5/2) = (2/i)^(n-1)*ChebyshevU(n-1, 5*i/4). - G. C. Greubel, Dec 26 2019
Comments