A015564 Expansion of x/(1 - 7*x - 6*x^2).
0, 1, 7, 55, 427, 3319, 25795, 200479, 1558123, 12109735, 94116883, 731476591, 5685037435, 44184121591, 343399075747, 2668898259775, 20742682272907, 161212165468999, 1252941251920435, 9737861756257039, 75682679805321883
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Lucyna Trojnar-Spelina and Iwona Włoch, On Generalized Pell and Pell-Lucas Numbers, Iranian Journal of Science and Technology, Transactions A: Science (2019), 1-7.
- Index entries for linear recurrences with constant coefficients, signature (7,6).
Programs
-
Magma
[n le 2 select n-1 else 7*Self(n-1) + 6*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2012
-
Mathematica
LinearRecurrence[{7, 6}, {0, 1}, 30] (* Vincenzo Librandi, Nov 14 2012 *) CoefficientList[Series[x/(1-7x-6x^2),{x,0,20}],x] (* Harvey P. Dale, Dec 04 2024 *)
-
PARI
x='x+O('x^30); concat([0], Vec(x/(1-7*x-6*x^2))) \\ G. C. Greubel, Dec 30 2017
-
Sage
[lucas_number1(n,7,-6) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
Formula
a(n) = 7*a(n-1) + 6*a(n-2).
Comments