cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A093643 Integer quotients arising in A015759.

Original entry on oeis.org

1, 5, 5, 25, 61, 61, 305, 4069, 91058273, 91058273, 86169701, 455291365, 430848505, 1129161898, 430848505, 2154242525, 5554554653, 3952066643, 19760333215, 5173153429, 20889495113, 25865767145, 25865767145, 104447475565, 129328835725, 241076065223, 350624513369
Offset: 1

Views

Author

Labos Elemer, May 20 2004

Keywords

Crossrefs

Cf. A015759.

Extensions

a(10)-a(18) from Donovan Johnson, Feb 05 2010
a(19)-a(27) from Donovan Johnson, Jun 18 2011

A015774 Numbers k such that phi(k) | sigma_15(k).

Original entry on oeis.org

1, 2, 3, 6, 12, 14, 15, 30, 35, 38, 42, 46, 54, 56, 70, 78, 87, 95, 105, 114, 126, 134, 135, 138, 140, 147, 161, 168, 174, 182, 184, 190, 209, 210, 215, 216, 222, 230, 248, 258, 264, 270, 285, 294, 297, 299, 315, 322, 357, 398, 402, 414, 418, 420
Offset: 1

Views

Author

Keywords

Comments

sigma_15(n) is the sum of the 15th powers of the divisors of n.

Crossrefs

Programs

  • Mathematica
    Select[Range[420], Divisible[DivisorSigma[15, #], EulerPhi[#]] &] (* Amiram Eldar, Nov 02 2019 *)

Extensions

Offset corrected by Amiram Eldar, Nov 02 2019

A015765 Numbers n such that phi(n) | sigma_7(n).

Original entry on oeis.org

1, 2, 3, 6, 12, 14, 15, 30, 35, 42, 56, 70, 78, 105, 140, 168, 190, 210, 248, 264, 270, 295, 357, 418, 420, 570, 590, 594, 616, 630, 714, 744, 767, 812, 840, 885, 910, 1038, 1045, 1240, 1254, 1416, 1485, 1534, 1589, 1672, 1770, 1848, 2065, 2090, 2214, 2301, 2376, 2422, 2436, 2580, 2730, 2970
Offset: 1

Views

Author

Keywords

Comments

sigma_7(n) is the sum of the 7th powers of the divisors of n.
In contrast to other values of k for which sigma_k(n) is much less frequently divisible by phi(n) (cf. A015762 (k=4: a(7) > 10^11 if it exists), A015759 (k=2: a(23) > 10^11)), it is quite easy to compute hundreds or even thousands of terms of the present sequence. - M. F. Hasler, Aug 26 2017

Programs

  • Mathematica
    Select[Range[2100],Divisible[DivisorSigma[7,#],EulerPhi[#]]&] (* Harvey P. Dale, Aug 17 2013 *)
  • PARI
    select( is(n)=sigma(n,7)%eulerphi(n)==0, [1..3000]) \\ M. F. Hasler, Aug 26 2017

Extensions

Third line of data completed by M. F. Hasler, Aug 26 2017

A015771 Numbers k such that phi(k) | sigma_13(k).

Original entry on oeis.org

1, 2, 3, 6, 12, 14, 15, 30, 35, 42, 56, 70, 78, 105, 140, 168, 190, 210, 248, 264, 270, 357, 418, 420, 570, 594, 616, 630, 714, 744, 749, 812, 840, 910, 1045, 1240, 1254, 1485, 1498, 1672, 1848, 2090, 2214, 2247, 2376, 2436, 2568, 2580, 2730
Offset: 1

Views

Author

Keywords

Comments

sigma_13(n) is the sum of the 13th powers of the divisors of n.

Crossrefs

Programs

  • Maple
    with(numtheory); a := []: for n from 1 to 3000 do if sigma[13](n) mod phi(n) = 0 then a := [op(a), n]; fi; od: a;
  • Mathematica
    Select[Range[3000], Divisible[DivisorSigma[13, #], EulerPhi[#]] &] (* Amiram Eldar, Nov 02 2019 *)

Formula

{n: A000010(n) | A013961(n)}. - R. J. Mathar, Sep 21 2017

Extensions

Offset corrected by Amiram Eldar, Nov 02 2019

A015762 Numbers n such that phi(n) | sigma_4(n).

Original entry on oeis.org

1, 2, 3, 6, 249, 498
Offset: 1

Views

Author

Keywords

Comments

sigma_4(n) is the sum of the 4th powers of the divisors of n (A001159).
sigma_{8j+4}(x)/phi(x) is an integer for j=0..500, x=1,2,3,6,249,498, and this is conjectured to hold for possible larger terms of A015762 and all j. Compare with comments to A015759, A091285, A015770. - Labos Elemer, May 27 2004
For any odd n in this sequence, 2n is also in the sequence, since phi(2n) = phi(n) and sigma_4(2n) = 17 sigma_4(n). More generally, if gcd(m,n) = 1 and m and n both are in this sequence, then mn is also in the sequence. No odd prime > 3 can be in the sequence, since if p = 2r + 1, then sigma_4(p) = 8r(2r^3 + 4r^2 + 3r + 1) + 2 is divisible by phi(p) = 2r only for r = 1. The term a(5) = 3*83 is the only odd semiprime term with a factor < 10^5. - M. F. Hasler, Aug 21 2017
a(7) > 3*10^11, if it exists. - Giovanni Resta, Aug 23 2017

Crossrefs

Programs

  • Magma
    [n: n in [1..1000]| DivisorSigma(4, n) mod EulerPhi(n) eq 0]; // Vincenzo Librandi, Aug 22 2017
  • Mathematica
    Select[Range[500],Divisible[DivisorSigma[4,#],EulerPhi[#]]&] (* Harvey P. Dale, Dec 16 2012 *)
  • PARI
    select( is(n)=sigma(n,4)%eulerphi(n)==0, [1..10^4])  \\ M. F. Hasler, Aug 21 2017
    

A078539 Least non-balanced x (i.e., not in A020492) such that sigma(2n-1,x)/phi(x) is an integer.

Original entry on oeis.org

38, 46, 295, 38, 235, 749, 38, 3687, 6128, 38, 1415, 46, 38, 4254, 10451, 38, 46, 8351, 38, 334, 4511, 38, 3398, 295, 38, 1286, 46, 38, 148870, 11015, 38, 46, 35519, 38, 10239, 14072, 38, 235, 76088, 38, 5991, 46, 38, 718, 295, 38, 46, 11654, 38, 30761
Offset: 2

Views

Author

Labos Elemer, Dec 02 2002

Keywords

Examples

			n=7: 2n-1 = 13, cases of sigma(13,x)/phi(x) is an integer listed in A015771: 1, 2, 3,6, 12, etc,; the first term which is non-balanced, i.e., not in A020492 is a(7) = 749 = A020492(31); increasing n, the trend of a(n) is roughly the same. If 2n-1 = 3s, i.e., is divisible by 3, then a(3s) = 38. Similar relationships hold for 2n - 1 = 5s, 7s, 11s, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[fl=1; Do[s1=DivisorSigma[1, n]/EulerPhi[n]; sk=DivisorSigma[2*k-1, n]/EulerPhi[n]; If[ !IntegerQ[s1]&&IntegerQ[sk]&&Equal[fl, 1], Print[{n, 2*k-1}]; fl=0], {n, 1, 1000000}], {k, 2, 100}]

Formula

a(n) = min{x; sigma(1,x) mod phi(x) = 0 but sigma(2n-1, x) mod phi(x) is not 0}.

Extensions

a(31) corrected by Amiram Eldar, Jul 21 2019

A094470 Numbers k such that phi(k) | sigma_18(k).

Original entry on oeis.org

1, 2, 3, 6, 22, 33, 66, 262, 750, 786, 2182, 6546, 8646, 56946, 72006, 162066, 222386, 626406, 667158, 737286, 857526, 1223123, 1489686, 1782726, 2446246, 2939046, 3669369, 4388406, 4780947, 6804006, 7338738, 9561894, 10761126, 12157926
Offset: 1

Views

Author

Labos Elemer, May 25 2004

Keywords

Comments

A015759 seems to be a true subsequence here.
sigma_18(n) is the sum of the 18th powers of the divisors of n (A013966). Conjecture: analogous sequences with any 4j+2 exponent instead of 18, includes all terms of A015759 [with exponent=2].

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], Divisible[DivisorSigma[18, #], EulerPhi[#]] &] (* Amiram Eldar, Mar 07 2020 *)
  • PARI
    isok(k) = (sigma(k, 18) % eulerphi(k)) == 0; \\ Michel Marcus, Mar 07 2020

A015767 Numbers k such that phi(k) | sigma_9(k).

Original entry on oeis.org

1, 2, 3, 6, 12, 14, 15, 30, 35, 38, 42, 54, 56, 70, 78, 87, 95, 105, 114, 126, 135, 140, 147, 168, 174, 182, 190, 209, 210, 215, 216, 222, 248, 258, 264, 266, 270, 285, 294, 297, 315, 342, 357, 378, 418, 420, 430, 447, 455, 456, 494, 518, 540, 546
Offset: 1

Views

Author

Keywords

Comments

sigma_9(n) = A013957(n) is the sum of the 9th powers of the divisors of n.

Crossrefs

Programs

  • Mathematica
    Select[Range[500], Divisible[DivisorSigma[9, #], EulerPhi[#]] &] (* Amiram Eldar, Nov 02 2019 *)

Extensions

Offset corrected by Amiram Eldar, Nov 02 2019

A015768 Numbers k such that phi(k) | sigma_10(k).

Original entry on oeis.org

1, 2, 3, 6, 22, 33, 66, 166, 250, 375, 498, 750, 1506, 1826, 5478, 8250, 10375, 10873, 16566, 17762, 20750, 21746, 31125, 32619, 41666, 53286, 62250, 62499, 65238, 98250, 110066, 119603, 124998, 177153, 195382, 228250, 239206
Offset: 1

Views

Author

Keywords

Comments

sigma_10(k) = A013958(k) is the sum of the 10th powers of the divisors of k.

Crossrefs

Programs

  • Magma
    [k:k in [1..240000]| IsIntegral(DivisorSigma(10,k)/EulerPhi(k))]; // Marius A. Burtea, Nov 06 2019
  • Mathematica
    Select[Range[240000], Divisible[DivisorSigma[10, #], EulerPhi[#]] &] (* Amiram Eldar, Nov 06 2019 *)

A015769 Numbers k such that phi(k) | sigma_11(k).

Original entry on oeis.org

1, 2, 3, 6, 12, 14, 15, 30, 35, 42, 56, 70, 78, 105, 140, 168, 190, 210, 235, 248, 264, 270, 329, 357, 418, 420, 470, 570, 594, 616, 630, 658, 695, 705, 714, 744, 799, 807, 812, 840, 910, 940, 987, 1045, 1240, 1254, 1316, 1390, 1410, 1485, 1529
Offset: 1

Views

Author

Keywords

Comments

sigma_11(n) = A013959(n) is the sum of the 11th powers of the divisors of n.

Crossrefs

Programs

  • Mathematica
    Select[Range[2000],Divisible[DivisorSigma[11,#],EulerPhi[#]]&] (* Harvey P. Dale, Feb 07 2015 *)

Extensions

Offset corrected by Amiram Eldar, Nov 02 2019
Showing 1-10 of 16 results. Next