A015999 a(n) = (tau(n^5) + 4)/5.
1, 2, 2, 3, 2, 8, 2, 4, 3, 8, 2, 14, 2, 8, 8, 5, 2, 14, 2, 14, 8, 8, 2, 20, 3, 8, 4, 14, 2, 44, 2, 6, 8, 8, 8, 25, 2, 8, 8, 20, 2, 44, 2, 14, 14, 8, 2, 26, 3, 14, 8, 14, 2, 20, 8, 20, 8, 8, 2, 80, 2, 8, 14, 7, 8, 44, 2, 14, 8, 44, 2, 36, 2, 8, 14, 14, 8, 44, 2, 26, 5, 8, 2, 80, 8, 8
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
with(numtheory): A015999:=n->(tau(n^5)+4)/5: seq(A015999(n), n=1..80); # Wesley Ivan Hurt, Apr 10 2015
-
Mathematica
(DivisorSigma[0, Range[80]^5]+4)/5 (* Wesley Ivan Hurt, Apr 10 2015 *)
-
PARI
A015999(n) = (numdiv(n^5)+4)/5; for(n=1, 10000, write("b015999.txt", n, " ", A015999(n))); \\ Antti Karttunen, Jan 17 2017
-
Python
from sympy import divisor_count def a(n): return (divisor_count(n**5) + 4)//5 print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Apr 14 2017
Extensions
Definition corrected by Vladeta Jovovic, Sep 03 2005