A016105 Blum integers: numbers of the form p * q where p and q are distinct primes congruent to 3 (mod 4).
21, 33, 57, 69, 77, 93, 129, 133, 141, 161, 177, 201, 209, 213, 217, 237, 249, 253, 301, 309, 321, 329, 341, 381, 393, 413, 417, 437, 453, 469, 473, 489, 497, 501, 517, 537, 553, 573, 581, 589, 597, 633, 649, 669, 681, 713, 717, 721, 737, 749, 753, 781, 789
Offset: 1
References
- Lenore Blum, Manuel Blum, and Mike Shub. A simple unpredictable pseudorandom number generator, SIAM Journal on computing 15:2 (1986), pp. 364-383.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..26828 (all terms < 2^19; first 1000 terms from T. D. Noe)
- Joe Hurd, Blum Integers, Talk at the Trinity College, Jan 20 1997.
- Wikipedia, Blum integer.
Crossrefs
Programs
-
Haskell
import Data.Set (singleton, fromList, deleteFindMin, union) a016105 n = a016105_list !! (n-1) a016105_list = f [3,7] (drop 2 a002145_list) 21 (singleton 21) where f qs (p:p':ps) t s | m < t = m : f qs (p:p':ps) t s' | otherwise = m : f (p:qs) (p':ps) t' (s' `union` (fromList pqs)) where (m,s') = deleteFindMin s t' = head $ dropWhile (> 3*p') pqs pqs = map (p *) qs -- Reinhard Zumkeller, Sep 23 2011
-
Maple
N:= 10000: # to get all terms <= N Primes:= select(isprime, [seq(i,i=3..N/3,4)]): S:=select(`<=`,{seq(seq(Primes[i]*Primes[j],i=1..j-1),j=2..nops(Primes))},N): sort(convert(S,list)); # Robert Israel, Dec 11 2015
-
Mathematica
With[{upto = 820}, Select[Union[Times@@@Subsets[ Select[Prime[Range[ PrimePi[ NextPrime[upto/3]]]], Mod[#, 4] == 3 &], {2}]], # <= upto &]] (* Harvey P. Dale, Aug 19 2011 *) Select[4Range[5, 197] + 1, PrimeNu[#] == 2 && MoebiusMu[#] == 1 && Mod[FactorInteger[#][[1, 1]], 4] != 1 &] (* Alonso del Arte, Nov 18 2015 *)
-
PARI
list(lim)=my(P=List(),v=List(),t,p); forprimestep(p=3,lim\3,4, listput(P,p)); for(i=2,#P, p=P[i]; for(j=1,i-1, t=p*P[j]; if(t>lim, break); listput(v,t))); Set(v) \\ Charles R Greathouse IV, Jul 01 2016, updated Sep 26 2024
-
PARI
isA016105(n) = (2==omega(n)&&2==bigomega(n)&&1==(n%4)&&3==((factor(n)[1,1])%4)); \\ Antti Karttunen, Dec 26 2020
-
Perl
use ntheory ":all"; forcomposites { say if ($ % 4) == 1 && is_square_free($) && scalar(factor($)) == 2 && !scalar(grep { ($ % 4) != 3 } factor($)); } 10000; # _Dana Jacobsen, Dec 10 2015
-
Python
from sympy import factorint def ok(n): fn = factorint(n) return len(fn) == sum(fn.values()) == 2 and all(f%4 == 3 for f in fn) print([k for k in range(790) if ok(k)]) # Michael S. Branicky, Dec 20 2021
Formula
a(n) ~ 4n log n/log log n. - Charles R Greathouse IV, Sep 17 2022
Extensions
More terms from Erich Friedman
Comments