A016114 The smallest representative in a cycle of circular primes, where circular primes are numbers that remain prime under cyclic shifts of digits.
2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933, 1111111111111111111, 11111111111111111111111
Offset: 1
Links
- K. S. Brown, On General Palindromic Numbers
- Chris K. Caldwell, Circular Primes
- Patrick De Geest, Circular Primes
- James Grime and Brady Haran, Absolute Primes, YouTube Numberphile video, 2024.
- Harvey Heinz, Prime Patterns (Illustration using 19937)
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
- Gianni Sarcone, Tourbillonnants nombres premiers, Tangente Web Site, No date.
Crossrefs
Programs
-
Mathematica
circularPrimeQ[p_] := Module[{d = IntegerDigits[p], ps}, ps = Table[FromDigits[d = RotateLeft[d]], {Length[d]}]; If[p > Min[ps], False, And @@ PrimeQ[ps]]]; Select[Prime[Range[100000]], circularPrimeQ] (* T. D. Noe, Mar 22 2012 *) Union[Select[Union/@((FromDigits/@Table[RotateRight[IntegerDigits[#],n],{n,IntegerLength[ #]}])&/@Prime[Range[20000]]),AllTrue[#,PrimeQ]&]][[All,1]] (* The program generates the first 19 terms of the sequence. *) (* Harvey P. Dale, Nov 14 2022 *)
Extensions
One more term from Lekraj Beedassy, Nov 07 2002
Name edited by Tanya Khovanova, Jul 29 2024
Comments