cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016127 Expansion of g.f. 1/((1-2*x)*(1-5*x)).

Original entry on oeis.org

1, 7, 39, 203, 1031, 5187, 25999, 130123, 650871, 3254867, 16275359, 81378843, 406898311, 2034499747, 10172515119, 50862608363, 254313107351, 1271565667827, 6357828601279, 31789143530683, 158945718701991, 794728595607107, 3973642982229839, 19868214919537803, 99341074614466231
Offset: 0

Views

Author

Keywords

Comments

With leading zero, binomial transform of A002450. - Paul Barry, Apr 11 2003
The sequence of fractions a(n)/(n+1) is the 3rd binomial transform of the sequence of fractions J(n+1)/(n+1) where J(n) is A001045(n). - Paul Barry, Aug 05 2005
Equals term (1,2) in M^n, M = the 3 X 3 matrix [1, 1, 3; 1, 3, 1; 3, 1, 1]. a(n)/a(n-1) tends to 5, a root to the charpoly x^3 - 5*x^2 - 4*x + 20. - Gary W. Adamson, Mar 12 2009

Crossrefs

Programs

Formula

a(n) = (5^(n+1) - 2^(n+1))/3 = Sum_{i=0..n} 5^i*2^(n-1) = 5*a(n-1) + 2^n = 2*a(n-1) + 5^n. - Henry Bottomley, Apr 07 2003
Binomial transform of A020989. - Paul Barry, May 18 2003
From Paul Barry, Aug 05 2005: (Start)
a(n) = Sum_{k=0..n} Sum_{j=0..n} 5^(n-j)*binomial(j,k).
a(n) = Sum_{k=0..n} 2^k*5^(n-k) = Sum_{k=0..n} 5^k*2^(n-k). (End)
For n > 2, a(n) = 9*a(n-1) - 24*a(n-2) + 20*a(n-3). - Gary W. Adamson, Dec 26 2007
From Elmo R. Oliveira, Mar 31 2025: (Start)
E.g.f.: exp(2*x)*(5*exp(3*x) - 2)/3.
a(n) = A005057(n+1)/3.
a(n) = 7*a(n-1) - 10*a(n-2). (End)