A225469
Triangle read by rows, S_4(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.
Original entry on oeis.org
1, 3, 1, 9, 10, 1, 27, 79, 21, 1, 81, 580, 310, 36, 1, 243, 4141, 3990, 850, 55, 1, 729, 29230, 48031, 16740, 1895, 78, 1, 2187, 205339, 557571, 299131, 52745, 3689, 105, 1, 6561, 1439560, 6338620, 5044536, 1301286, 137592, 6524, 136, 1
Offset: 0
[n\k][ 0, 1, 2, 3, 4, 5, 6]
[0] 1,
[1] 3, 1,
[2] 9, 10, 1,
[3] 27, 79, 21, 1,
[4] 81, 580, 310, 36, 1,
[5] 243, 4141, 3990, 850, 55, 1,
[6] 729, 29230, 48031, 16740, 1895, 78, 1.
- Vincenzo Librandi, Rows n = 0..50, flattened
- P. Bala, A 3 parameter family of generalized Stirling numbers.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See pp. 8-9.
- Peter Luschny, Generalized Eulerian polynomials.
- Peter Luschny, The Stirling-Frobenius numbers.
- Shi-Mei Ma, Toufik Mansour, and Matthias Schork, Normal ordering problem and the extensions of the Stirling grammar, Russian Journal of Mathematical Physics, 2014, 21(2), arXiv 1308.0169 p. 12.
-
SF_S := proc(n, k, m) option remember;
if n = 0 and k = 0 then return(1) fi;
if k > n or k < 0 then return(0) fi;
SF_S(n-1, k-1, m) + (m*(k+1)-1)*SF_S(n-1, k, m) end:
seq(print(seq(SF_S(n, k, 4), k=0..n)), n = 0..5);
-
EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFS[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]/(k!*m^k); Table[ SFS[n, k, 4], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
-
@CachedFunction
def EulerianNumber(n, k, m) :
if n == 0: return 1 if k == 0 else 0
return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m) + (m*k+1)*EulerianNumber(n-1, k, m)
def SF_S(n, k, m):
return add(EulerianNumber(n, j, m)*binomial(j, n - k) for j in (0..n))/(factorial(k)*m^k)
for n in (0..6): [SF_S(n, k, 4) for k in (0..n)]
A225467
Triangle read by rows, T(n, k) = 4^k*S_4(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.
Original entry on oeis.org
1, 3, 4, 9, 40, 16, 27, 316, 336, 64, 81, 2320, 4960, 2304, 256, 243, 16564, 63840, 54400, 14080, 1024, 729, 116920, 768496, 1071360, 485120, 79872, 4096, 2187, 821356, 8921136, 19144384, 13502720, 3777536, 430080, 16384, 6561, 5758240, 101417920, 322850304
Offset: 0
[n\k][ 0, 1, 2, 3, 4, 5, 6, 7]
[0] 1,
[1] 3, 4,
[2] 9, 40, 16,
[3] 27, 316, 336, 64,
[4] 81, 2320, 4960, 2304, 256,
[5] 243, 16564, 63840, 54400, 14080, 1024,
[6] 729, 116920, 768496, 1071360, 485120, 79872, 4096,
[7] 2187, 821356, 8921136, 19144384, 13502720, 3777536, 430080, 16384.
...
From _Wolfdieter Lang_, Aug 11 2017: (Start)
Recurrence (see the Maple program): T(4, 2) = 4*T(3, 1) + (4*2+3)*T(3, 2) = 4*316 + 11*336 = 4960.
Boas-Buck recurrence for column k = 2, and n = 4: T(4, 2) = (1/2)*(2*(6 + 4*2)*T(3, 2) + 2*6*(-4)^2*Bernoulli(2)*T(2, 2)) = (1/2)*(28*336 + 12*16*(1/6)*16) = 4960. (End)
-
SF_SS := proc(n, k, m) option remember;
if n = 0 and k = 0 then return(1) fi;
if k > n or k < 0 then return(0) fi;
m*SF_SS(n-1, k-1, m) + (m*(k+1)-1)*SF_SS(n-1, k, m) end:
seq(print(seq(SF_SS(n, k, 4), k=0..n)), n=0..5);
-
EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFSS[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]/k!; Table[ SFSS[n, k, 4], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
-
T(n, k) = sum(m=0, k, binomial(k, m)*(-1)^(m - k)*((3 + 4*m)^n)/k!);
for(n = 0, 10, for(k=0, n, print1(T(n, k),", ");); print();) \\ Indranil Ghosh, Apr 13 2017
-
from sympy import binomial, factorial
def T(n, k): return sum(binomial(k, m)*(-1)**(m - k)*((3 + 4*m)**n)//factorial(k) for m in range(k + 1))
for n in range(11): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 13 2017
-
@CachedFunction
def EulerianNumber(n, k, m) :
if n == 0: return 1 if k == 0 else 0
return (m*(n-k)+m-1)*EulerianNumber(n-1,k-1,m)+(m*k+1)*EulerianNumber(n-1,k,m)
def SF_SS(n, k, m):
return add(EulerianNumber(n,j,m)*binomial(j,n-k) for j in (0..n))/factorial(k)
def A225467(n): return SF_SS(n, k, 4)
A190541
a(n) = 7^n - 3^n.
Original entry on oeis.org
0, 4, 40, 316, 2320, 16564, 116920, 821356, 5758240, 40333924, 282416200, 1977149596, 13840755760, 96887416084, 678218289880, 4747547161036, 33232887522880, 232630384847044, 1628413210489960, 11398894023111676, 79792262810827600, 558545853622930804, 3909821017201928440
Offset: 0
-
[7^n - 3^n: n in [0..30]];
-
A190541:=n->7^n-3^n: seq(A190541(n), n=0..25); # Wesley Ivan Hurt, Oct 04 2014
-
Table[7^n - 3^n, {n, 0, 25}] (* or *) CoefficientList[Series[4 x /((1 - 3 x) (1 - 7 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 04 2014 *)
LinearRecurrence[{10,-21},{0,4},20] (* Harvey P. Dale, Mar 30 2015 *)
-
a(n)=7^n-3^n \\ Charles R Greathouse IV, Jun 02 2011
A165147
a(n) = (3*7^n-3^n)/2.
Original entry on oeis.org
1, 9, 69, 501, 3561, 25089, 176109, 1234221, 8643921, 60520569, 423683349, 2965901541, 20761665081, 145332718449, 1017332217789, 7121335090461, 49849374331041, 348945706410729, 2442620203155429, 17098342196928981
Offset: 0
-
[ (3*7^n-3^n)/2: n in [0..19] ];
-
LinearRecurrence[{10, -21}, {1, 9}, 25] (* Paolo Xausa, Apr 22 2024 *)
Table[(3*7^n-3^n)/2,{n,0,20}] (* Harvey P. Dale, Aug 05 2025 *)
Showing 1-4 of 4 results.
Comments