cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016142 Expansion of 1/((1-3*x)*(1-9*x)).

Original entry on oeis.org

1, 12, 117, 1080, 9801, 88452, 796797, 7173360, 64566801, 581120892, 5230147077, 47071500840, 423644039001, 3812797945332, 34315186290957, 308836690967520, 2779530261754401, 25015772484929772, 225141952751788437, 2026277575928357400, 18236498186842001001, 164128483692038362212
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of lattices L in Z^(n+1) such that the quotient group Z^(n+1) / L is C_9. - Álvar Ibeas, Nov 29 2015
In the game of SET with four attributes there are 1080 potential SETs. See A090245. In the generalized game of SET with different numbers of attributes, the number of potential SETs is a(n+1). - Robert Price, Oct 14 2017

Crossrefs

Programs

  • Magma
    [(1/6)*(9^(n+1)-3^(n+1)): n in [0..20]]; // Vincenzo Librandi, Feb 24 2014
  • Mathematica
    Join[{a=1,b=12},Table[c=12*b-27*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2011 *)
    CoefficientList[Series[1/((1-3x)(1-9x)),{x,0,20}],x] (* or *) Table[ (9^(n+1) -3^(n+1))/6,{n,0,20}]  (* Harvey P. Dale, Apr 03 2011 *)
    Table[ncards = 3^nattr; (ncards*(ncards - 1))/6, {nattr, 1, 20}] (* Robert Price, Oct 14 2017 *)
  • PARI
    Vec(1/((1-3*x)*(1-9*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • PARI
    a(n) = (1/6)*(9^(n+1) - 3^(n+1)); \\ Joerg Arndt, Feb 23 2014
    
  • Sage
    [lucas_number1(n,12,27) for n in range(1, 20)] # Zerinvary Lajos, Apr 27 2009
    

Formula

a(n) = (1/6)*(9^(n+1) - 3^(n+1)).
a(n-1) = Sum_{i=1..n} binomial(n,i)*3^(n-i)*6^(i-1). - Sam Handler (sam_5_5_5_0(AT)yahoo.com), Jun 29 2004
a(n) = 12*a(n-1) - 27*a(n-2), a(0)=1, a(1)=12. - Vincenzo Librandi, Mar 14 2011
a(n) = A006100(n+2) - A006100(n+1), for n > 0. - Álvar Ibeas, Nov 29 2015
E.g.f.: exp(3*x)*(3*exp(3*x) - 1)/2. - Elmo R. Oliveira, Mar 08 2025