A016162 Expansion of 1/((1-5*x)*(1-8*x)).
1, 13, 129, 1157, 9881, 82173, 673009, 5462197, 44088201, 354658733, 2847035489, 22825112037, 182845036921, 1463980998493, 11717951503569, 93774129606677, 750345624744041, 6003527937405453, 48032038196509249
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (13,-40).
Crossrefs
Cf. A016161.
Programs
-
Magma
[n le 2 select 13^(n-1) else 13*Self(n-1) -40*Self(n-2): n in [1..31]]; // G. C. Greubel, Nov 09 2024
-
Mathematica
Table[(8^(n+1)-5^(n+1))/3, {n,0,30}] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *) CoefficientList[Series[1/((1-5x)(1-8x)),{x,0,30}],x] (* or *) LinearRecurrence[ {13,-40},{1,13},30] (* Harvey P. Dale, Feb 02 2015 *)
-
PARI
Vec(1/((1-5*x)*(1-8*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
-
SageMath
A016162=BinaryRecurrenceSequence(13,-40,1,13) [A016162(n) for n in range(31)] # G. C. Greubel, Nov 09 2024
Formula
a(n) = (8^(n+1) - 5^(n+1))/3. - Lambert Klasen (lambert.klasen(AT)gmx.net), Feb 05 2005
a(0)=1, a(n) = 8*a(n-1) + 5^n. - Vincenzo Librandi, Feb 09 2011
a(0)=1, a(1)=13, a(n) = 13*a(n-1) - 40*a(n-2). - Harvey P. Dale, Feb 02 2015
E.g.f.: (1/3)*(-5*exp(5*x) + 8*exp(8*x)). - G. C. Greubel, Nov 09 2024