A016209 Expansion of 1/((1-x)(1-3x)(1-5x)).
1, 9, 58, 330, 1771, 9219, 47188, 239220, 1205941, 6059229, 30384718, 152189310, 761743711, 3811110039, 19062724648, 95335146600, 476740303081, 2383895225649, 11920057258978, 59602029687090
Offset: 0
Examples
a(2) = h^{(3)}_2 = 1^2 + 3^2 + 5^2 + 1^1*(3^1 + 5^1) + 3^1*5^1 = 58. - _Wolfdieter Lang_, May 26 2017
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-23,15).
Crossrefs
Programs
-
Magma
[(5^(n+2)-2*3^(n+2)+1)/8: n in [0..20]]; // Vincenzo Librandi, Sep 17 2011
-
Maple
A016209 := proc(n) (5^(n+2)-2*3^(n+2)+1)/8; end proc: # R. J. Mathar, Mar 22 2011
-
Mathematica
Join[{a=1,b=9},Table[c=8*b-15*a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2011 *) CoefficientList[Series[1/((1-x)(1-3x)(1-5x)),{x,0,30}],x] (* or *) LinearRecurrence[ {9,-23,15},{1,9,58},30] (* Harvey P. Dale, Feb 20 2020 *)
-
PARI
a(n)=if(n<0,0,n+=2; (5^n-2*3^n+1)/8)
Formula
a(n) = A039755(n+2, 2).
a(n) = (5^(n+2) - 2*3^(n+2)+1)/8 = a(n-1) + A005059(n+1) = 8*a(n-1) - 15*a(n-2) + 1 = (A003463(n+2) - A003462(n+2))/2. - Henry Bottomley, Jun 06 2000
G.f.: 1/((1-x)(1-3*x)(1-5*x)). See the name.
E.g.f.: (25*exp(5*x) - 18*exp(3*x) + exp(x))/8, from the e.g.f. of the third column (k=2) of A039755. - Wolfdieter Lang, May 26 2017
Comments