A007798
Expected number of random moves in Tower of Hanoi problem with n disks starting with a randomly chosen position and ending at a position with all disks on the same peg.
Original entry on oeis.org
0, 0, 2, 18, 116, 660, 3542, 18438, 94376, 478440, 2411882, 12118458, 60769436, 304378620, 1523487422, 7622220078, 38125449296, 190670293200, 953480606162, 4767790451298, 23840114517956, 119204059374180, 596030757224102, 2980185167180118, 14901019979079416
Offset: 0
David G. Poole (dpoole(AT)trentu.ca)
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- M. A. Alekseyev and T. Berger, Solving the Tower of Hanoi with Random Moves. In: J. Beineke, J. Rosenhouse (eds.) The Mathematics of Various Entertaining Subjects: Research in Recreational Math, Princeton University Press, 2016, pp. 65-79. ISBN 978-0-691-16403-8
- Index entries for linear recurrences with constant coefficients, signature (9,-23,15).
- Index entries for sequences related to Towers of Hanoi
-
[(5^n-2*3^n+1)/4: n in [0..25]]; // Vincenzo Librandi, Oct 11 2011
-
seq( (1 -2*3^n +5^n)/4, n=0..25); # G. C. Greubel, Mar 05 2020
-
Table[(1 -2*3^n +5^n)/4, {n,0,25}] (* G. C. Greubel, Mar 05 2020 *)
-
concat([0,0], Vec(-2*x^2/((x-1)*(3*x-1)*(5*x-1)) + O(x^30))) \\ Colin Barker, Sep 17 2014
-
[(1 -2*3^n +5^n)/4 for n in (0..25)] # G. C. Greubel, Mar 05 2020
More precise definition and more terms from
Max Alekseyev, Feb 04 2008
A016234
Expansion of 1/((1-x) * (1-5*x) * (1-9*x)).
Original entry on oeis.org
1, 15, 166, 1650, 15631, 144585, 1320796, 11984820, 108351661, 977606355, 8810664226, 79357013190, 714518294491, 6432190529325, 57897344158456, 521114244398760, 4690218934452121, 42212924084385495, 379921085131051486, 3419313608037373530, 30773941681625912551
Offset: 0
-
CoefficientList[Series[1/((1-x)(1-5x)(1-9x)),{x,0,30}],x] (* or *) LinearRecurrence[{15,-59,45},{1,15,166},30] (* Harvey P. Dale, Oct 16 2014 *)
-
Vec(1/((1-x)*(1-5*x)*(1-9*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
-
a(n) = (9^(n+2) - 2*5^(n+2) + 1)/32; \\ Joerg Arndt, Aug 13 2013
A021424
Expansion of 1/((1-x)(1-3x)(1-5x)(1-7x)).
Original entry on oeis.org
1, 16, 170, 1520, 12411, 96096, 719860, 5278240, 38153621, 273134576, 1942326750, 13748476560, 97001079631, 682818667456, 4798793396840, 33686888924480, 236284962774441, 1656378634646736, 11606570499786130
Offset: 0
a(2) = h^{(4)}_2 = (1^2 + 3^2 + 5^2 + 7^2) + (1^1*(3^1 + 5^1 + 7^1) + 3^1*(5^1 + 7^1) + 5^1*7^1) = 84 + 86 = 120. - _Wolfdieter Lang_, May 26 2017
-
m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-3*x)*(1-5*x)*(1-7*x)))); // Vincenzo Librandi, Jul 09 2013
-
I:=[1, 16, 170, 1520]; [n le 4 select I[n] else 16*Self(n-1)-86*Self(n-2)+176*Self(n-3)-105*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Jul 09 2013
-
Table[(7^n - 3*5^n + 3^(n + 1) - 1)/48, {n, 3, 60}]
CoefficientList[Series[1 / ((1 - x) (1 - 3 x) (1 - 5 x) (1 - 7 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 09 2013 *)
LinearRecurrence[{16,-86,176,-105},{1,16,170,1520},30] (* Harvey P. Dale, May 26 2014 *)
-
x='x+O('x^99); Vec(1/((1-x)*(1-3*x)*(1-5*x)*(1-7*x))) \\ Altug Alkan, Oct 11 2017
A200859
a(n) = 2*a(n-1)+3*a(n-2)+5^n for n>1, a(0)=-2, a(1)=1.
Original entry on oeis.org
-2, 1, 21, 170, 1028, 5691, 30091, 155380, 791658, 4002581, 20145761, 101127390, 506832688, 2537750671, 12699515031, 63529860200, 317746156118, 1589021345961, 7945978425901, 39732507217810, 198670381353948, 993375442564451, 4966947820206371, 24834950923184220
Offset: 0
- B. Satyanarayana and K. S. Prasad, Discrete Mathematics and Graph Theory, PHI Learning Pvt. Ltd. (Eastern Economy Edition), 2009, p. 81 (3.1;4)
-
[n le 2 select 3*n-5 else 2*Self(n-1)+3*Self(n-2)+5^(n-1): n in [1..24]];
-
A200859:=n->(50*5^n-81*3^n-17*(-1)^n)/24; seq(A200859(n), n=0..30); # Wesley Ivan Hurt, Dec 26 2013
-
LinearRecurrence[{7,-7,-15}, {-2,1,21}, 24]
nxt[{n_,a_,b_}]:={n+1,b,2b+3a+5^(n+1)}; NestList[nxt,{1,-2,1},30][[All,2]] (* Harvey P. Dale, Dec 28 2021 *)
-
makelist(coeff(taylor(-(2-15*x)/((1+x)*(1-3*x)*(1-5*x)), x, 0, n), x, n), n, 0, 23);
-
for(n=0, 23, print1((50*5^n-81*3^n-17*(-1)^n)/24", "));
-
def lr(a0, a1, a2, a3, a4, a5):
x, y, z = a0, a1, a2
while True:
yield x
x, y, z = y, z, a5*x+a4*y+a3*z
A200859 = lr(-2, 1, 21, 7, -7, -15)
print([next(A200859) for n in range(24)]) # Bruno Berselli, May 09 2014
A200864
Expansion of 1/((1+x)*(1-3*x)*(1-5*x)).
Original entry on oeis.org
1, 7, 42, 230, 1211, 6237, 31732, 160300, 806421, 4046867, 20278622, 101525970, 508028431, 2541337897, 12710276712, 63562145240, 317843011241, 1589311911327, 7946850122002, 39735122306110, 198678226618851, 993398978359157, 4967018427590492, 24835162745336580
Offset: 0
-
m:=24; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1+x)*(1-3*x)*(1-5*x))));
-
CoefficientList[Series[1/((1+x)(1-3x)(1-5x)), {x, 0, 24}], x]
LinearRecurrence[{7,-7,-15},{1,7,42},30] (* Harvey P. Dale, May 26 2015 *)
-
makelist(coeff(taylor(1/((1+x)*(1-3*x)*(1-5*x)), x, 0, n), x, n), n, 0, 23);
-
Vec(1/((1+x)*(1-3*x)*(1-5*x))+O(x^24))
A016247
Expansion of 1/((1-x) * (1-6*x) * (1-11*x)).
Original entry on oeis.org
1, 18, 241, 2910, 33565, 378546, 4219993, 46755846, 516329845, 5691721530, 62681496241, 689931815118, 7591862105101, 83526155988930, 918881752875145, 10108263503608086, 111194283871577893, 1223157434578690506, 13454853652313597665, 148004121407137586910, 1628049722868641531581
Offset: 0
-
CoefficientList[Series[1/((1-x)(1-6x)(1-11x)),{x,0,30}],x] (* or *) LinearRecurrence[{18,-83,66},{1,18,241},30] (* Harvey P. Dale, Sep 23 2012 *)
-
a(n) = (11^(n+2) - 2*6^(n+2) + 1)/50; \\ Joerg Arndt, Aug 13 2013
A286719
Column k=4 of triangle A039755, Sheffer(exp(x), (exp(2*x) - 1)/2).
Original entry on oeis.org
1, 25, 395, 5075, 58086, 618870, 6289690, 61885450, 595122671, 5629238615, 52605474285, 487197745125, 4481780785756, 41018845739260, 373968405050180, 3399402534376100, 30830907772159341, 279134548584080805, 2523817507756513375, 22795663165336810375, 205730405672107235426, 1855561201430080303250, 16727971116048518559870, 150747219419372400319950, 1358093516662781192486011
Offset: 0
a(2) = h^{(5)}_2 = 1^2 + 3^2 + 5^2 + 7^2 + 9^2 + 1^1*(3^1 + 5^1 + 7^1 + 9^1) + 3^1*(5^1 + 7^1 + 9^1) + 5^1*(7^1 + 9^1) + 7^1*9^1 = 165 + 230 = 395. The multichoose(5, 2) = binomial(6, 2) = 15 polytopes are five squares and ten rectangles of total area 165 and 230, respectively.
A016198
Expansion of g.f. 1/((1-x)*(1-2*x)*(1-5*x)).
Original entry on oeis.org
1, 8, 47, 250, 1281, 6468, 32467, 162590, 813461, 4068328, 20343687, 101722530, 508620841, 2543120588, 12715635707, 63578244070, 317891351421, 1589457019248, 7947285620527, 39736429151210, 198682147853201, 993410743460308, 4967053725690147, 24835268645227950
Offset: 0
Cf.
A000225,
A000392,
A002275,
A002452,
A003462,
A003463,
A003464,
A016123,
A016125,
A016208,
A016209,
A016218,
A016256,
A023000,
A023001.
Showing 1-8 of 8 results.
Comments