cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A016234 Expansion of 1/((1-x) * (1-5*x) * (1-9*x)).

Original entry on oeis.org

1, 15, 166, 1650, 15631, 144585, 1320796, 11984820, 108351661, 977606355, 8810664226, 79357013190, 714518294491, 6432190529325, 57897344158456, 521114244398760, 4690218934452121, 42212924084385495, 379921085131051486, 3419313608037373530, 30773941681625912551
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x)(1-5x)(1-9x)),{x,0,30}],x] (* or *) LinearRecurrence[{15,-59,45},{1,15,166},30] (* Harvey P. Dale, Oct 16 2014 *)
  • PARI
    Vec(1/((1-x)*(1-5*x)*(1-9*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • PARI
    a(n) = (9^(n+2) - 2*5^(n+2) + 1)/32; \\ Joerg Arndt, Aug 13 2013

Formula

a(0)=1, a(1)=15, a(n) = 14*a(n-1) - 45*a(n-2) + 1. - Vincenzo Librandi, Feb 10 2011
a(n) = (9^(n+2) - 2*5^(n+2) + 1)/32. - Yahia Kahloune, Aug 13 2013
a(0)=1, a(1)=15, a(2)=166, a(n) = 15*a(n-1) - 59*a(n-2) + 45*a(n-3). - Harvey P. Dale, Oct 16 2014
O.g.f.: see the name.
E.g.f.: (d^2/dx^2) (exp(x)*((exp(4*x) - 1)^2)/(4^2*2!)) = exp(x)*(1 - 50*exp(4*x) + 81*exp(8*x))/32.
From Seiichi Manyama, May 05 2025: (Start)
a(n) = Sum_{k=0..n} 4^k * binomial(n+2,k+2) * Stirling2(k+2,2).
a(n) = Sum_{k=0..n} (-4)^k * 9^(n-k) * binomial(n+2,k+2) * Stirling2(k+2,2). (End)

A016315 Expansion of g.f. 1/((1 - 2*x)*(1 - 7*x)*(1 - 12*x)).

Original entry on oeis.org

1, 21, 319, 4305, 55015, 683697, 8369047, 101581473, 1227048295, 14781074385, 177768357559, 2135988547329, 25651240368391, 307950529031985, 3696355860679255, 44362916914251873, 532401529073793703, 6389144031605054097, 76672008158297618935, 920080056352830739905
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A016307.

Programs

  • Magma
    I:=[1, 21, 319]; [n le 3 select I[n] else 21*Self(n-1)-122*Self(n-2)+168*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jun 26 2013
    
  • Magma
    m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1/((1-2*x)*(1-7*x)*(1-12*x))))); // Vincenzo Librandi, Jun 26 2013
    
  • Mathematica
    CoefficientList[Series[1 / ((1 - 2 x) (1 - 7 x) (1 - 12 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jun 26 2013 *)
  • PARI
    x='x+O('x^99); Vec(1/((1-2*x)*(1-7*x)*(1-12*x))) \\ Altug Alkan, Sep 21 2018

Formula

a(n) = 2*2^n/25 - 49*7^n/25 + 72*12^n/25. - R. J. Mathar, Jun 23 2013
From Vincenzo Librandi, Jun 26 2013: (Start)
a(n) = 21*a(n-1) - 122*a(n-2) + 168*a(n-3).
a(n) = 19*a(n-1) - 84*a(n-2) + 2^n. (End)
From Seiichi Manyama, May 04 2025: (Start)
a(n) = Sum_{k=0..n} 5^k * 2^(n-k) * binomial(n+2,k+2) * Stirling2(k+2,2).
a(n) = Sum_{k=0..n} (-5)^k * 12^(n-k) * binomial(n+2,k+2) * Stirling2(k+2,2). (End)
E.g.f.: exp(2*x)*(2 - 49*exp(5*x) + 72*exp(10*x))/25. - Stefano Spezia, May 04 2025
Showing 1-2 of 2 results.