A016631 Decimal expansion of log(8).
2, 0, 7, 9, 4, 4, 1, 5, 4, 1, 6, 7, 9, 8, 3, 5, 9, 2, 8, 2, 5, 1, 6, 9, 6, 3, 6, 4, 3, 7, 4, 5, 2, 9, 7, 0, 4, 2, 2, 6, 5, 0, 0, 4, 0, 3, 0, 8, 0, 7, 6, 5, 7, 6, 2, 3, 6, 2, 0, 4, 0, 0, 2, 8, 4, 8, 0, 1, 8, 0, 8, 6, 5, 9, 0, 9, 0, 8, 4, 1, 4, 6, 8, 1, 7, 5, 8, 9, 9, 8, 0, 9, 8, 9, 2, 5, 6, 0, 6
Offset: 1
Examples
2.079441541679835928251696364374529704226500403080765762362040028480180....
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.
- Bruce C. Berndt, Ramanujan's Notebooks Part I, Springer-Verlag.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..20000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Eugen J. Ionascu and Gabriel Prajitura, Things to do with a broken stick, arXiv:1009.0890 [math.HO], 2010-2013.
- Index entries for transcendental numbers
Crossrefs
Cf. A016736 (continued fraction). - Harry J. Smith, May 16 2009
Programs
-
Maple
a:=proc(n) local x,y,z,w; Digits:=2*n+1; x:=3*ln(2);y:=floor(10^(n-2)*x)*10; z:=floor(10^(n-1)*x);w:=z-y; end: # Eugen J. Ionascu, Feb 19 2011
-
Mathematica
RealDigits[Log[8], 10, 90][[1]] (* Bruno Berselli, Mar 26 2013 *)
-
PARI
default(realprecision, 20080); x=log(8); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016631.txt", n, " ", d)); \\ Harry J. Smith, May 16 2009
Formula
Equals 2 + Sum_{n >= 1} 1/( n*(16*n^2 - 1) ). This summation was the first problem submitted by Ramanujan to the Journal of the Indian Mathematical Society. See Berndt, Corollary on p. 29. - Peter Bala, Feb 25 2015
Equals 2 + Sum_{n >= 1} (-1)^n*(n-1)/(n*(n+1)). - Bruno Berselli, Sep 09 2020
Equals 2 + Sum_{k>=1} zeta(2*k+1)/16^k. - Amiram Eldar, May 27 2021
Equals 3*A002162. - R. J. Mathar, Apr 11 2024
Comments