cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A153870 Decimal expansion of log_18 (8).

Original entry on oeis.org

7, 1, 9, 4, 3, 7, 3, 9, 9, 7, 0, 4, 3, 9, 4, 3, 3, 4, 2, 0, 7, 0, 5, 2, 4, 9, 4, 7, 3, 1, 5, 6, 9, 1, 8, 5, 3, 0, 4, 5, 3, 3, 7, 9, 0, 0, 5, 7, 2, 1, 1, 6, 9, 7, 9, 3, 5, 9, 3, 4, 7, 0, 2, 1, 4, 4, 7, 3, 8, 7, 1, 7, 2, 2, 9, 5, 6, 8, 6, 3, 4, 5, 5, 1, 9, 6, 6, 9, 2, 4, 4, 4, 0, 4, 2, 3, 3, 7, 3
Offset: 0

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			.71943739970439433420705249473156918530453379005721169793593...
		

Crossrefs

Cf. decimal expansion of log_18(m): A152812 (m=2), A153021 (m=3), A153113 (m=4), A153444 (m=5), A153608 (m=6), A153628 (m=7), this sequence, A154017 (m=9), A154168 (m=10), A154189 (m=11), A154210 (m=12), A154400 (m=13), A154490 (m=14), A154688 (m=15), A154830 (m=16), A154898 (m=17), A155094 (m=19), A155530 (m=20), A155685 (m=21), A155784 (m=22), A155889 (m=23), A155995 (m=24).

Programs

  • Mathematica
    RealDigits[Log[18, 8], 10, 100][[1]] (* Vincenzo Librandi, Sep 04 2013 *)

Formula

Equals A016631 / A016641 . - R. J. Mathar, Jun 10 2024

A154858 Decimal expansion of log_8 (17).

Original entry on oeis.org

1, 3, 6, 2, 4, 8, 7, 6, 1, 3, 7, 5, 0, 1, 1, 3, 1, 3, 6, 0, 8, 4, 6, 8, 8, 6, 7, 0, 2, 7, 0, 1, 3, 4, 7, 8, 4, 6, 7, 0, 4, 2, 2, 4, 2, 7, 4, 4, 8, 2, 7, 3, 5, 6, 2, 7, 0, 8, 8, 6, 9, 6, 8, 8, 1, 2, 8, 8, 9, 8, 8, 3, 6, 3, 4, 9, 1, 2, 7, 3, 5, 6, 0, 9, 9, 1, 1, 4, 3, 8, 3, 9, 4, 7, 8, 9, 4, 7, 5
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			1.3624876137501131360846886702701347846704224274482735627088...
		

Crossrefs

Cf. decimal expansion of log_8(m): A152956 (m=3), A153204 (m=5), A153493 (m=6), A153618 (m=7), A154010 (m=9), A154159 (m=10), A154180 (m=11), A154201 (m=12), A154309 (m=13), A154468 (m=14), A154574 (m=15), this sequence, A154927 (m=18), A155060 (m=19), A155502 (m=20), A155675 (m=21), A155741 (m=22), A155827 (m=23), A155975 (m=24).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Log(17)/Log(8); // G. C. Greubel, Aug 31 2018
  • Mathematica
    RealDigits[Log[8, 17], 10, 100][[1]] (* Vincenzo Librandi, Sep 01 2013 *)
  • PARI
    default(realprecision, 100); log(17)/log(8) \\ G. C. Greubel, Aug 31 2018
    

Formula

Equals A016640 / A016631 = A154847/3. - R. J. Mathar, Apr 11 2024

A188171 The number of divisors d of n of the form d == 5 (mod 8).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 2, 0, 1, 0, 0, 2
Offset: 1

Views

Author

R. J. Mathar, Mar 23 2011

Keywords

Comments

a(5n) >= 1 as d=5 contributes to the count.

Examples

			a(13) = 1 because the divisor d=13 is 8+5 == 5 (mod 8).
		

Crossrefs

Programs

  • Maple
    sigmamr := proc(n,m,r) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d,m) = r then a := a+1 ; end if; end do: a; end proc:
    A188171 := proc(n) sigmamr(n,8,5) ; end proc:
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[#, 8] == 5 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A188171(n) = sumdiv(n, d, (5==(d%8)));  \\ Antti Karttunen, Jul 09 2017

Formula

A188169(n)+a(n) = A001826(n).
A188169(n)+A188170(n)-a(n)-A188172(n) = A002325(n).
G.f.: Sum_{k>=1} x^(5*k)/(1 - x^(8*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/8 + c*n + O(n^(1/3)*log(n)), where c = gamma(5,8) - (1 - gamma)/8 = -0.131189..., gamma(5,8) = -(psi(5/8) + log(8))/8 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A188172 Number of divisors d of n of the form d == 7 (mod 8).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1
Offset: 1

Views

Author

R. J. Mathar, Mar 23 2011

Keywords

Examples

			a(A007522(i)) = 1, any i.
		

Crossrefs

Programs

  • Haskell
    a188172 n = length $ filter ((== 0) . mod n) [7,15..n]
    -- Reinhard Zumkeller, Mar 26 2011
    
  • Maple
    sigmamr := proc(n,m,r) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d,m) = r then a := a+1 ; end if; end do: a; end proc:
    A188172 := proc(n) sigmamr(n,8,7) ; end proc:
  • Mathematica
    Table[Count[Divisors[n],?(Mod[#,8]==7&)],{n,90}] (* _Harvey P. Dale, Mar 08 2014 *)
  • PARI
    a(n) = sumdiv(n, d, (d % 8) == 7); \\ Amiram Eldar, Nov 25 2023

Formula

A188170(n)+a(n) = A001842(n).
A188169(n)+A188170(n)-A188171(n)-a(n) = A002325(n).
a(A188226(n))=n and a(m)<>n for m<A188226(n), n>=0; a(A141164(n))=1. - Reinhard Zumkeller, Mar 26 2011
G.f.: Sum_{k>=1} x^(7*k)/(1 - x^(8*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/8 + c*n + O(n^(1/3)*log(n)), where c = gamma(7,8) - (1 - gamma)/8 = -0.212276..., gamma(7,8) = -(psi(7/8) + log(8))/8 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A256781 Decimal expansion of the generalized Euler constant gamma(1,8).

Original entry on oeis.org

7, 8, 8, 6, 3, 1, 3, 9, 0, 2, 0, 2, 0, 0, 2, 3, 6, 7, 4, 4, 3, 8, 8, 0, 8, 1, 9, 8, 3, 8, 9, 7, 6, 6, 6, 1, 9, 7, 8, 1, 1, 8, 2, 0, 4, 9, 2, 1, 0, 8, 8, 9, 2, 2, 5, 9, 4, 2, 5, 5, 8, 6, 2, 0, 2, 5, 3, 4, 0, 8, 6, 9, 6, 9, 1, 7, 7, 8, 6, 5, 0, 2, 5, 9, 9, 7, 8, 6, 7, 7, 1, 0, 1, 6, 0, 7, 4, 8, 0, 7, 3, 3, 5, 7, 2
Offset: 0

Views

Author

Jean-François Alcover, Apr 10 2015

Keywords

Examples

			0.788631390202002367443880819838976661978118204921...
		

Crossrefs

Cf. A001620 (EulerGamma), A016631, A228725 (gamma(1,2)), A250129, A256425 (gamma(1,3)), A256778-A256784 (selection of ruler-and-compass constructible gamma(r,k)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/8 + (1/8)*(Pi(R)/2*(Sqrt(2)+1) + Log(2) + Sqrt(2)*Log(Sqrt(2) + 1)); // G. C. Greubel, Aug 28 2018
  • Mathematica
    RealDigits[-3/8*Log[2] - PolyGamma[1/8]/8, 10, 105] // First
  • PARI
    Euler/8 + 1/8*(Pi/2*(sqrt(2)+1) + log(2) + sqrt(2)*log(sqrt(2) + 1)) \\ Michel Marcus, Apr 10 2015
    

Formula

Equals EulerGamma/8 + 1/8*(Pi/2*(sqrt(2)+1) + log(2) + sqrt(2)*log(sqrt(2) + 1)).
Equals Sum_{n>=0} (1/(8n+1) - 1/4*arctanh(4/(8n+5))).
Equals -(psi(1/8) + log(8))/8 = -(A250129 + A016631)/8. - Amiram Eldar, Jan 07 2024

A256782 Decimal expansion of the generalized Euler constant gamma(3,8).

Original entry on oeis.org

0, 8, 4, 3, 1, 9, 6, 8, 8, 4, 3, 3, 1, 6, 2, 9, 5, 5, 9, 3, 9, 0, 4, 0, 3, 5, 6, 8, 0, 3, 7, 5, 4, 8, 0, 0, 1, 2, 8, 1, 2, 4, 3, 7, 3, 8, 2, 5, 9, 1, 7, 0, 6, 8, 5, 2, 3, 0, 3, 0, 3, 9, 9, 9, 3, 8, 7, 7, 8, 8, 1, 6, 6, 3, 2, 4, 9, 5, 4, 3, 5, 1, 9, 7, 6, 3, 9, 7, 8, 7, 3, 1, 6, 0, 2, 9, 5, 3, 3, 2, 0, 1, 0, 1, 2
Offset: 0

Views

Author

Jean-François Alcover, Apr 10 2015

Keywords

Examples

			0.08431968843316295593904035680375480012812437382591706852303...
		

Crossrefs

Cf. A001620 (EulerGamma), A016631, A228725 (gamma(1,2)), A256425 (gamma(1,3)), A256778-A256784 (selection of ruler-and-compass constructible gamma(r,k)), A354633.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/8 + (1/8)*(Pi(R)/2*(Sqrt(2)-1) + Log(2) - Sqrt(2)*Log(Sqrt(2)+1)); // G. C. Greubel, Aug 28 2018
  • Mathematica
    Join[{0}, RealDigits[-3/8*Log[2] - PolyGamma[3/8]/8, 10, 104] // First]
  • PARI
    default(realprecision, 100); Euler/8 + 1/8*(Pi/2*(sqrt(2)-1) + log(2) - sqrt(2)*log(sqrt(2)+1)) \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals EulerGamma/8 + 1/8*(Pi/2*(sqrt(2)-1) + log(2) - sqrt(2)*log(sqrt(2)+1)).
Equals -(psi(3/8) + log(8))/8 = -(A354633 + A016631)/8. - Amiram Eldar, Jan 07 2024

A016687 Decimal expansion of log(64) = 6*log(2).

Original entry on oeis.org

4, 1, 5, 8, 8, 8, 3, 0, 8, 3, 3, 5, 9, 6, 7, 1, 8, 5, 6, 5, 0, 3, 3, 9, 2, 7, 2, 8, 7, 4, 9, 0, 5, 9, 4, 0, 8, 4, 5, 3, 0, 0, 0, 8, 0, 6, 1, 6, 1, 5, 3, 1, 5, 2, 4, 7, 2, 4, 0, 8, 0, 0, 5, 6, 9, 6, 0, 3, 6, 1, 7, 3, 1, 8, 1, 8, 1, 6, 8, 2, 9, 3, 6, 3, 5, 1, 7, 9, 9, 6, 1, 9, 7, 8, 5, 1, 2, 1, 2
Offset: 1

Views

Author

Keywords

Examples

			4.158883083359671856503392728749059408453000806161531524724080056960361...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A002162, A005900, A016492 (continued fraction), A016627, A016631.

Programs

  • Mathematica
    RealDigits[Log[64],10,120][[1]] (* Harvey P. Dale, May 06 2022 *)
  • PARI
    default(realprecision, 20080); x=log(64); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016687.txt", n, " ", d)); \\ Harry J. Smith, May 22 2009

Formula

Equals 2*A016631 = 3*A016627 = 6*A002162. - Alois P. Heinz, Aug 07 2023
From Peter Bala, Mar 05 2024: (Start)
log(64) = 4 + Sum_{n >= 1} (-1)^(n+1)/(p(n)*p(n+1)), where p(n) = n*(2*n^2 + 1)/3 = A005900.
Continued fraction: log(64) = 4 + 1/(6 + (1*2)/(6 + (2*3)/(6 + (3*4)/(6 + (4*5)/(6 + ... ))))). See A142983. Cf. A016627. (End)

A355953 Decimal expansion of (gamma + log(8)/2)/Pi.

Original entry on oeis.org

5, 1, 4, 6, 8, 6, 8, 5, 2, 8, 2, 7, 2, 8, 5, 3, 7, 0, 8, 5, 3, 9, 6, 9, 1, 1, 6, 3, 2, 0, 7, 5, 2, 7, 1, 9, 3, 0, 1, 2, 9, 3, 1, 8, 4, 2, 1, 5, 7, 6, 5, 6, 3, 0, 4, 5, 6, 0, 6, 9, 2, 6, 7, 3, 0, 9, 8, 0, 8, 2, 8, 9, 2, 6, 9, 2, 6, 6, 1, 6, 5, 0, 0, 5, 4
Offset: 0

Views

Author

Hugo Pfoertner, Jul 26 2022

Keywords

Comments

This constant is the additive part A in the asymptotic behavior of the resistance R between two nodes in an infinite square lattice of one-ohm resistors separated by the distance vector (i,j): R(i,j) = log(sqrt(i^2+j^2))/Pi + A. From an engineering point of view, this constant summand can be regarded as a kind of near-field contribution, which contains the well-known resistance of 1/2 ohms between 2 neighboring nodes as the main part.
See, e.g., Cserti (1999) formula (33) on page 5 and Appendix B, pages 15 and 16, for a derivation of the parts of the constant.

Examples

			0.5146868528272853708539691163207527193...
		

Crossrefs

Cf. A001620, A016631, A355955, A355954 (similar for triangular lattice).
Cf. A355565, A355566, A355567 (exact solutions for small distances).

Programs

  • Mathematica
    RealDigits[(EulerGamma + Log[8]/2)/Pi, 10, 120][[1]] (* Amiram Eldar, Jun 18 2023 *)
  • PARI
    (Euler + log(8)/2)/Pi

A262023 Decimal expansion of 3*log(2)/2.

Original entry on oeis.org

1, 0, 3, 9, 7, 2, 0, 7, 7, 0, 8, 3, 9, 9, 1, 7, 9, 6, 4, 1, 2, 5, 8, 4, 8, 1, 8, 2, 1, 8, 7, 2, 6, 4, 8, 5, 2, 1, 1, 3, 2, 5, 0, 2, 0, 1, 5, 4, 0, 3, 8, 2, 8, 8, 1, 1, 8, 1, 0, 2, 0, 0, 1, 4, 2, 4, 0, 0, 9, 0, 4, 3, 2, 9, 5, 4, 5, 4, 2, 0, 7, 3, 4, 0, 8, 7, 9, 4, 9, 9, 0, 4, 9, 4, 6, 2, 8
Offset: 1

Views

Author

Wolfdieter Lang, Sep 08 2015

Keywords

Comments

This is the limit of the reordered alternating harmonic series 1 + 1/3 - 1/2 + 1/5 + 1/7 - 1/4 + 1/9 + 1/11 - 1/6 + ... + ... - ..., with partial sums given in A262031/A262022. This shows that the alternating harmonic series is conditionally convergent. For original references on such series see A262031.

Examples

			1.039720770839917964125848182187264852113250201540382881181020014240...
		

Crossrefs

Programs

Formula

Equals 3*A002162/2.
Equals A016631/2.
3*log(2)/2 = (3/2)*Sum_{n>=1} (-1)^(n+1)/n = Sum_{n>=1} ((-1)^(n+1)/n + (-1)^(n+1)/(2*n)) = A002162 + (A016655/10). - Terry D. Grant, Jul 24 2016
Equals 1 + Sum_{k>=1} 2/((4*k)^3 - 4*k) (Ramanujan, 1911). - Amiram Eldar, Jan 01 2025

A016736 Continued fraction for log(8).

Original entry on oeis.org

2, 12, 1, 1, 2, 2, 1, 8, 1, 4, 1, 31, 1, 8, 1, 4, 1, 6, 1, 3, 4, 2, 1, 1, 1, 2, 1, 4, 1, 1, 2, 6, 1, 1, 1, 7, 1, 1, 2, 4, 1, 1, 1, 3, 3, 1, 2, 55, 1, 3, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 3, 41, 1, 3, 1, 2, 2, 12, 1, 5, 2, 5, 2, 2, 1, 3, 1, 10, 4, 1, 12, 2, 2, 1
Offset: 0

Views

Author

Keywords

Examples

			2.07944154167983592825169636... = 2 + 1/(12 + 1/(1 + 1/(1 + 1/(2 + ...)))). - _Harry J. Smith_, May 16 2009
		

Crossrefs

Cf. A016631 (decimal expansion).

Programs

  • Magma
    ContinuedFraction(3*Log(2)); // G. C. Greubel, Sep 15 2018
  • Mathematica
    ContinuedFraction[3*Log[2], 100] (* G. C. Greubel, Sep 15 2018 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(log(8)); for (n=1, 20000, write("b016736.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 16 2009
    

Extensions

Offset changed by Andrew Howroyd, Jul 10 2024
Showing 1-10 of 15 results. Next