cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A074378 Even triangular numbers halved.

Original entry on oeis.org

0, 3, 5, 14, 18, 33, 39, 60, 68, 95, 105, 138, 150, 189, 203, 248, 264, 315, 333, 390, 410, 473, 495, 564, 588, 663, 689, 770, 798, 885, 915, 1008, 1040, 1139, 1173, 1278, 1314, 1425, 1463, 1580, 1620, 1743, 1785, 1914, 1958, 2093, 2139, 2280, 2328, 2475
Offset: 0

Views

Author

W. Neville Holmes, Sep 04 2002

Keywords

Comments

Set of integers k such that k + (1 + 2 + 3 + 4 + ... + x) = 3*k, where x is sufficiently large. For example, 203 is a term because 203 + (1 + 2 + 3 + 4 + ... +28) = 609 and 609 = 3*203. - Gil Broussard, Sep 01 2008
Set of all m such that 16*m+1 is a perfect square. - Gary Detlefs, Feb 21 2010
Integers of the form Sum_{k=0..n} k/2. - Arkadiusz Wesolowski, Feb 07 2012
Numbers of the form h*(4*h + 1) for h = 0, -1, 1, -2, 2, -3, 3, ... - Bruno Berselli, Feb 26 2018
Numbers whose distance to nearest square equals their distance to nearest oblong; that is, numbers k such that A053188(k) = A053615(k). - Lamine Ngom, Oct 27 2020
The sequence terms are the exponents in the expansion of Product_{n >= 1} (1 - q^(8*n))*(1 + q^(8*n-3))*(1 + q^(8*n-5)) = 1 + q^3 + q^5 + q^14 + q^18 + .... - Peter Bala, Dec 30 2024

Crossrefs

Cf. A010709, A047522. [Vincenzo Librandi, Feb 14 2009]
Cf. A266883 (numbers n such that 16*n-15 is a square).

Programs

  • Magma
    f:=func; [0] cat [f(n*m): m in [-1,1], n in [1..25]]; // Bruno Berselli, Nov 13 2012
  • Maple
    a:=n->(2*n+1)*floor((n+1)/2): seq(a(n),n=0..50); # Muniru A Asiru, Feb 01 2019
  • Mathematica
    1/2 * Select[PolygonalNumber@ Range[0, 100], EvenQ] (* Michael De Vlieger, Jun 01 2017, Version 10.4 *)
    Select[Accumulate[Range[0,100]],EvenQ]/2 (* Harvey P. Dale, Feb 15 2025 *)
  • PARI
    a(n)=(2*n+1)*(n-n\2)
    

Formula

Sum_{n>=0} q^a(n) = (Prod_{n>0} (1-q^n))*(Sum_{n>=0} A035294(n)*q^n).
a(n) = n*(n + 1)/4 where n*(n + 1)/2 is even.
G.f.: x*(3 + 2*x + 3*x^2)/((1 - x)*(1 - x^2)^2).
From Benoit Jubin, Feb 05 2009: (Start)
a(n) = (2*n + 1)*floor((n + 1)/2).
a(2*k) = k*(4*k+1); a(2*k+1) = (k+1)*(4*k+3). (End)
a(2*n) = A007742(n), a(2*n-1) = A033991(n). - Arkadiusz Wesolowski, Jul 20 2012
a(n) = (4*n + 1 - (-1)^n)*(4*n + 3 - (-1)^n)/4^2. - Peter Bala, Jan 21 2019
a(n) = (2*n+1)*(n+1)*(1+(-1)^(n+1))/4 + (2*n+1)*(n)*(1+(-1)^n)/4. - Eric Simon Jacob, Jan 16 2020
From Amiram Eldar, Jul 03 2020: (Start)
Sum_{n>=1} 1/a(n) = 4 - Pi (A153799).
Sum_{n>=1} (-1)^(n+1)/a(n) = 6*log(2) - 4 (See A016687). (End)
a(n) = A014494(n)/2 = A274757(n)/3 = A266883(n) - 1. - Hugo Pfoertner, Dec 31 2024

A016492 Continued fraction for log(64).

Original entry on oeis.org

4, 6, 3, 2, 2, 18, 1, 1, 1, 64, 1, 3, 1, 10, 1, 2, 1, 7, 2, 5, 3, 1, 2, 2, 3, 2, 1, 2, 1, 4, 1, 3, 3, 2, 1, 1, 1, 4, 1, 1, 7, 2, 1, 27, 2, 1, 1, 4, 4, 1, 1, 1, 4, 1, 1, 6, 20, 1, 8, 2, 2, 1, 5, 1, 11, 1, 10, 1, 5, 1, 1, 2, 5, 9, 1, 5, 1, 2, 2
Offset: 1

Keywords

Examples

			4.158883083359671856503392728... = 4 + 1/(6 + 1/(3 + 1/(2 + 1/(2 + ...)))). - _Harry J. Smith_, May 22 2009
		

Crossrefs

Cf. A016687 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Log[64], 100] (* Paolo Xausa, Mar 27 2024 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(log(64)); for (n=1, 20000, write("b016492.txt", n, " ", x[n])); } \\ Harry J. Smith, May 22 2009

A383824 Decimal expansion of 12*log(2)/(6*log(2) - 3).

Original entry on oeis.org

7, 1, 7, 7, 3, 9, 8, 8, 9, 9, 1, 2, 4, 1, 7, 9, 6, 6, 1, 6, 1, 0, 7, 6, 8, 8, 6, 3, 8, 8, 4, 1, 7, 9, 9, 7, 6, 2, 6, 1, 0, 1, 1, 8, 2, 4, 0, 8, 6, 8, 0, 1, 1, 9, 7, 8, 8, 6, 7, 1, 0, 7, 5, 3, 6, 4, 1, 0, 9, 4, 6, 0, 2, 6, 1, 5, 4, 1, 2, 4, 2, 1, 0, 5, 5, 4, 2, 4, 1, 3, 4, 7, 3, 2, 5, 8, 1, 3, 4, 2
Offset: 1

Author

Stefano Spezia, May 11 2025

Keywords

Comments

Upper bound for the irrationality measure of 2-adic analog of zeta(3) (see Lai et al., 2025 at p. 3).

Examples

			7.177398899124179661610768863884179976261011824...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[12Log[2]/(6Log[2]-3),10,100][[1]]

A091477 Decimal expansion of (3*Catalan*Pi)/4 - Pi^3/64 + (Pi^2*log(64))/64 - (105*zeta(3))/64.

Original entry on oeis.org

3, 4, 2, 9, 4, 7, 4, 4, 9, 8, 1, 6, 8, 3, 1, 4, 7, 5, 1, 8, 6, 8, 7, 3, 4, 5, 1, 4, 2, 1, 1, 7, 5, 4, 1, 5, 6, 3, 6, 9, 1, 9, 3, 1, 6, 0, 9, 4, 0, 4, 0, 4, 1, 3, 2, 2, 1, 8, 3, 0, 2, 8, 4, 0, 5, 9, 9, 4, 7, 5, 9, 3, 7, 3, 9, 2, 8, 1, 2, 0, 4, 5, 8, 2, 4, 4, 1, 1, 8, 7, 5, 7, 5, 2, 7, 1, 6, 2, 3, 1, 4, 7
Offset: 0

Author

Eric W. Weisstein, Jan 13 2004

Keywords

Examples

			0.342947449816831475186873451421175415636919316094040413221830284...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); L:=RiemannZeta();  (48*Catalan(R)*Pi(R) - Pi(R)^3 + Pi(R)^2*Log(64) - 105*Evaluate(L,3))/64; // G. C. Greubel, Aug 25 2018
  • Mathematica
    RealDigits[(48*Catalan*Pi - Pi^3 + Pi^2*Log[64] - 105*Zeta[3])/64, 10, 100][[1]] (* G. C. Greubel, Aug 25 2018 *)
  • PARI
    default(realprecision, 100); (48*Catalan*Pi - Pi^3 + Pi^2*log(64) - 105*zeta(3))/64 \\ G. C. Greubel, Aug 25 2018
    

Formula

Equals Integral_{t=0..Pi/4} t^3/sin(t)^2 dt.

A365523 Decimal expansion of 6*log(2) - 4.

Original entry on oeis.org

1, 5, 8, 8, 8, 3, 0, 8, 3, 3, 5, 9, 6, 7, 1, 8, 5, 6, 5, 0, 3, 3, 9, 2, 7, 2, 8, 7, 4, 9, 0, 5, 9, 4, 0, 8, 4, 5, 3, 0, 0, 0, 8, 0, 6, 1, 6, 1, 5, 3, 1, 5, 2, 4, 7, 2, 4, 0, 8, 0, 0, 5, 6, 9, 6, 0, 3, 6, 1, 7, 3, 1, 8, 1, 8, 1, 6, 8, 2, 9, 3, 6, 3, 5, 1, 7, 9, 9, 6, 1, 9, 7, 8, 5, 1, 2, 1, 2, 5, 2, 5, 2, 0, 0, 8, 8, 8, 6, 1, 2
Offset: 0

Author

Claude H. R. Dequatre, Sep 08 2023

Keywords

Comments

This sequence is also the decimal expansion of Sum_{k>=1} (-1)^(k+1)*f(k), where f(k) = (4*k^2 - 2*k)/(k^2 + k) is the ratio between the k-th hexagonal and triangular numbers.

Examples

			0.15888308335967185650339272874905940845300080616153...
		

Crossrefs

Cf. A002162. Essentially the same as A016687.

Programs

  • Mathematica
    RealDigits[6*Log[2] - 4, 10 , 100][[1]] (* Amiram Eldar, Sep 08 2023 *)
  • PARI
    6*log(2)-4

Formula

Equals Sum_{k>=1} k/(2^k*(k + 1)*(k + 2)) [Shamos].
Equals Sum_{k>=1} (-1)^(k+1)*(4*k^2 - 2*k)/(k^2 + k).
Showing 1-5 of 5 results.