cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A256843 Decimal expansion of the generalized Euler constant gamma(2,3).

Original entry on oeis.org

0, 7, 3, 2, 0, 7, 3, 7, 5, 7, 0, 6, 1, 5, 9, 5, 9, 3, 6, 6, 9, 0, 3, 1, 8, 5, 9, 9, 0, 7, 5, 2, 9, 1, 3, 9, 0, 7, 4, 6, 2, 3, 8, 3, 0, 2, 6, 8, 3, 0, 9, 3, 4, 5, 6, 2, 9, 3, 9, 0, 6, 4, 4, 6, 6, 9, 8, 5, 1, 0, 9, 4, 2, 7, 4, 5, 9, 7, 4, 0, 4, 1, 7, 7, 2, 3, 0, 8, 1, 5, 5, 3, 0, 8, 6, 0, 9, 0, 3, 1, 6, 0, 1, 6, 8, 4
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			0.07320737570615959366903185990752913907462383026830934562939...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma), A002391, A200064.
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12).
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/3 - Pi(R)/(6*Sqrt(3)) + Log(3)/6; // G. C. Greubel, Aug 28 2018
  • Mathematica
    Join[{0}, RealDigits[-Log[3]/3 - PolyGamma[2/3]/3, 10, 105] // First]
  • PARI
    default(realprecision, 100); Euler/3 - Pi/(6*sqrt(3)) + log(3)/6 \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals EulerGamma/3 - Pi/(6*sqrt(3)) + log(3)/6.
Equals -(psi(2/3) + log(3))/3 = (A200064 - A002391)/3. - Amiram Eldar, Jan 07 2024

A188170 The number of divisors d of n of the form d == 3 (mod 8).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 1, 0, 2, 0, 1, 1, 0, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 0, 0, 2, 1, 1, 1, 0, 0, 2, 0, 1, 1, 0, 1, 1, 1, 0, 1
Offset: 1

Views

Author

R. J. Mathar, Mar 23 2011

Keywords

Comments

a(3n) >= 1 as the divisor d=3 contributes to the count then.

Crossrefs

Programs

  • Maple
    sigmamr := proc(n,m,r) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d,m) = r then a := a+1 ; end if; end do: a; end proc:
    A188170 := proc(n) sigmamr(n,8,3) ; end proc:
  • Mathematica
    Table[Count[Divisors[n],?(Mod[#,8]==3&)],{n,100}] (* _Harvey P. Dale, Jul 08 2013 *)
  • PARI
    a(n) = sumdiv(n, d, (d%8) == 3); \\ Michel Marcus, Nov 05 2018

Formula

a(n) + A188172(n) = A001842(n).
A188169(n) + a(n) - A188171(n) - A188172(n) = A002325(n).
G.f.: Sum_{k>=1} x^(3*k)/(1 - x^(8*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/8 + c*n + O(n^(1/3)*log(n)), where c = gamma(3,8) - (1 - gamma)/8 = A256782 - (1 - A001620)/8 = 0.0314716... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A256845 Decimal expansion of the generalized Euler constant gamma(2,4).

Original entry on oeis.org

1, 4, 4, 3, 0, 3, 9, 1, 6, 2, 2, 5, 3, 8, 3, 2, 1, 5, 1, 5, 1, 6, 2, 8, 0, 2, 2, 5, 2, 0, 6, 0, 0, 6, 0, 7, 7, 6, 0, 5, 3, 9, 8, 3, 3, 9, 8, 4, 9, 8, 0, 8, 9, 9, 7, 0, 1, 4, 4, 1, 8, 0, 8, 7, 2, 1, 2, 1, 6, 9, 3, 1, 6, 9, 4, 4, 1, 6, 1, 6, 7, 7, 3, 4, 2, 3, 6, 7, 6, 5, 8, 2, 2, 9, 3, 6, 6, 8, 7, 3, 7, 8, 6, 5, 7, 8, 6
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			0.1443039162253832151516280225206006077605398339849808997...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma),
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    R:= RealField(100); EulerGamma(R)/4; // G. C. Greubel, Aug 28 2018
  • Mathematica
    RealDigits[EulerGamma/4, 10, 107] // First
  • PARI
    default(realprecision, 100); Euler/4 \\ G. C. Greubel, Aug 28 2018
    

Formula

-log(4)/4 - PolyGamma(1/2)/4 = EulerGamma/4
From Amiram Eldar, Jul 21 2020: (Start)
Equals -Integral_{x=0..oo} e^(-x^2)*x*log(x) dx.
Equals Integral_{x=0..oo} (e^(-x^4) - e^(-x^2))/x dx. (End)

A256846 Decimal expansion of the generalized Euler constant gamma(3,4) (negated).

Original entry on oeis.org

0, 7, 5, 1, 0, 8, 3, 7, 0, 3, 3, 3, 3, 5, 4, 6, 1, 2, 3, 0, 1, 8, 9, 4, 3, 7, 0, 0, 2, 4, 7, 9, 3, 1, 1, 0, 7, 4, 5, 2, 3, 1, 3, 0, 7, 3, 4, 6, 8, 4, 3, 5, 1, 4, 3, 9, 0, 2, 5, 6, 2, 6, 2, 9, 4, 3, 9, 1, 1, 7, 1, 3, 5, 9, 8, 9, 3, 6, 2, 7, 8, 1, 9, 2, 8, 0, 1, 7, 5, 5, 5, 9, 5, 7, 2, 3, 2, 7, 4, 2, 3, 3, 6, 1, 0
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			-0.07510837033335461230189437002479311074523130734684351439...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma),
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/4 - Pi(R)/8 - Log(4)/4 + Log(8)/4; // G. C. Greubel, Aug 28 2018
  • Mathematica
    Join[{0}, RealDigits[-Log[4]/4 - PolyGamma[3/4]/4, 10, 104] // First ]
  • PARI
    default(realprecision, 100); Euler/4 - Pi/8 - log(4)/4 + log(8)/4 \\ G. C. Greubel, Aug 28 2018
    

Formula

-log(4)/4 - PolyGamma(3/4)/4 = EulerGamma/4 - Pi/8 - log(4)/4 + log(8)/4

A256848 Decimal expansion of the generalized Euler constant gamma(3,5) (negated).

Original entry on oeis.org

0, 1, 3, 7, 6, 3, 7, 3, 9, 7, 0, 8, 1, 8, 1, 9, 9, 1, 9, 6, 8, 0, 1, 9, 0, 7, 6, 8, 8, 3, 9, 9, 1, 1, 3, 9, 6, 0, 3, 0, 1, 3, 4, 1, 9, 9, 1, 5, 7, 8, 2, 1, 0, 2, 7, 2, 9, 1, 9, 2, 5, 2, 5, 6, 4, 2, 6, 0, 2, 0, 2, 9, 2, 9, 3, 3, 1, 1, 0, 5, 9, 7, 1, 1, 3, 5, 8, 2, 8, 2, 0, 7, 4, 6, 8, 0, 1, 5, 8, 1, 3, 9, 8, 7, 7, 9, 9, 8, 6
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			-0.013763739708181991968019076883991139603013419915782102729...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma),
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/5 + Pi(R)/(10*Sqrt(2*(5+Sqrt(5)))) - Pi(R)/(2*Sqrt(10*(5+Sqrt(5)))) + Log(5)/20 + Log((5-Sqrt(5))/(5+Sqrt(5)))/(4*Sqrt(5)); // G. C. Greubel, Aug 28 2018
  • Mathematica
    Join[{0}, RealDigits[-Log[5]/5 - PolyGamma[3/5]/5, 10, 108] // First  ]
  • PARI
    default(realprecision, 100); Euler/5 + Pi/(10*sqrt(2*(5+sqrt(5)))) - Pi/(2*sqrt(10*(5+sqrt(5)))) + log(5)/20 + log((5-sqrt(5))/(5+sqrt(5)))/(4*sqrt(5)) \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals -log(5)/5 - PolyGamma(3/5)/5.
Equals EulerGamma/5 + Pi/(10*sqrt(2*(5+sqrt(5)))) - Pi/(2*sqrt(10*(5+sqrt(5)))) + log(5)/20 + log((5-sqrt(5))/(5+sqrt(5)))/(4*sqrt(5)).

A256849 Decimal expansion of the generalized Euler constant gamma(4,5) (negated).

Original entry on oeis.org

1, 2, 8, 8, 8, 5, 8, 6, 9, 1, 4, 5, 5, 9, 2, 3, 8, 3, 0, 4, 1, 8, 9, 2, 3, 4, 0, 0, 1, 3, 8, 7, 0, 4, 4, 3, 9, 7, 8, 2, 8, 8, 1, 7, 2, 9, 1, 4, 6, 5, 8, 9, 7, 8, 5, 6, 0, 5, 6, 7, 4, 1, 9, 4, 4, 5, 8, 4, 3, 5, 5, 6, 0, 6, 4, 3, 9, 4, 7, 5, 2, 0, 6, 4, 7, 5, 1, 4, 4, 3, 7, 7, 0, 6, 5, 1, 5, 1, 1, 7, 3, 3, 4, 7, 3, 8, 4
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			-0.12888586914559238304189234001387044397828817291465897856 ...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma),
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/5 - Pi(R)/(10*Sqrt(2*(5-Sqrt(5)))) - Pi(R)/(2*Sqrt(10*(5-Sqrt(5)))) + Log(5)/20 - Log(5-Sqrt(5))/(4*Sqrt(5)) + Log(5+Sqrt(5))/( 4*Sqrt(5)); // G. C. Greubel, Aug 28 2018
  • Mathematica
    RealDigits[-Log[5]/5 - PolyGamma[4/5]/5, 10, 107] // First
  • PARI
    default(realprecision, 100); Euler/5 - Pi/(10*sqrt(2*(5-sqrt(5)))) - Pi/(2*sqrt(10*(5-sqrt(5)))) + log(5)/20 - log(5-sqrt(5))/(4*sqrt(5)) + log(5+sqrt(5))/(4*sqrt(5)) \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals -log(5)/5 - PolyGamma(4/5)/5.
Equals EulerGamma/5 - Pi/(10*sqrt(2*(5-sqrt(5)))) - Pi/(2*sqrt(10*(5-sqrt(5)))) + log(5)/20 - log(5-sqrt(5))/(4*sqrt(5)) + log(5+sqrt(5))/(4*sqrt(5)).

A256844 Decimal expansion of the generalized Euler constant gamma(3,3) (negated).

Original entry on oeis.org

1, 7, 3, 7, 9, 8, 8, 7, 4, 5, 8, 8, 8, 5, 8, 9, 4, 3, 5, 9, 6, 2, 4, 4, 3, 8, 2, 2, 8, 0, 0, 4, 1, 0, 9, 1, 2, 0, 1, 7, 7, 7, 0, 7, 3, 9, 6, 0, 9, 4, 1, 9, 5, 0, 9, 7, 6, 3, 0, 9, 0, 3, 2, 9, 1, 7, 5, 4, 2, 1, 8, 8, 8, 1, 3, 6, 4, 8, 0, 9, 8, 6, 4, 5, 5, 5, 6, 2, 3, 0, 5, 0, 7, 3, 2, 8, 4, 4, 6, 4, 2, 4, 4, 4, 6
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			-0.1737988745888589435962443822800410912017770739609419509763...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma),
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/3 - Log(3)/3; // G. C. Greubel, Aug 28 2018
  • Mathematica
    RealDigits[EulerGamma/3 - Log[3]/3, 10, 105] // First
  • PARI
    default(realprecision, 100); Euler/3 - log(3)/3 \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals EulerGamma/3 - log(3)/3.

A256847 Decimal expansion of the generalized Euler constant gamma(4,4) (negated).

Original entry on oeis.org

2, 0, 2, 2, 6, 9, 6, 7, 4, 0, 5, 4, 5, 8, 9, 4, 3, 9, 5, 5, 6, 9, 8, 8, 0, 3, 8, 2, 0, 8, 4, 8, 7, 6, 7, 6, 2, 7, 7, 2, 1, 0, 2, 3, 3, 1, 9, 5, 1, 4, 6, 7, 2, 7, 3, 5, 8, 8, 9, 8, 1, 9, 6, 0, 2, 5, 4, 7, 9, 8, 7, 9, 2, 9, 0, 4, 3, 1, 1, 9, 0, 0, 6, 8, 6, 9, 4, 8, 9, 7, 6, 7, 5, 2, 7, 2, 6, 5, 6, 3, 9, 2, 3, 4
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			-0.202269674054589439556988038208487676277210233195146727358898...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma),
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (EulerGamma(R) - Log(4))/4; // G. C. Greubel, Aug 28 2018
  • Mathematica
    RealDigits[EulerGamma/4 - Log[4]/4, 10, 104] // First
  • PARI
    default(realprecision, 100); (Euler - log(4))/4 \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals (EulerGamma - log(4))/4.

A256850 Decimal expansion of the generalized Euler constant gamma(5,5) (negated).

Original entry on oeis.org

2, 0, 6, 4, 4, 4, 4, 4, 9, 5, 0, 6, 5, 1, 3, 5, 0, 2, 7, 9, 8, 8, 4, 9, 4, 4, 8, 6, 2, 8, 7, 5, 7, 0, 4, 1, 6, 9, 6, 6, 8, 8, 4, 0, 3, 6, 6, 5, 7, 1, 8, 8, 2, 4, 6, 2, 1, 3, 7, 6, 1, 3, 1, 3, 1, 7, 8, 6, 2, 2, 5, 2, 1, 8, 5, 9, 9, 8, 6, 1, 8, 7, 3, 8, 6, 3, 7, 3, 6, 2, 9, 6, 0, 2, 8, 6, 5, 7, 2, 2, 5, 7
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			-0.20644444950651350279884944862875704169668840366571882462...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma),
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (EulerGamma(R) - Log(5))/5; // G. C. Greubel, Aug 28 2018
  • Mathematica
    RealDigits[EulerGamma/5 - Log[5]/5, 10, 102] // First
  • PARI
    default(realprecision, 100); (Euler - log(5))/5 \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals (EulerGamma - log(5))/5.
Showing 1-9 of 9 results.