cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016634 Decimal expansion of log(11).

Original entry on oeis.org

2, 3, 9, 7, 8, 9, 5, 2, 7, 2, 7, 9, 8, 3, 7, 0, 5, 4, 4, 0, 6, 1, 9, 4, 3, 5, 7, 7, 9, 6, 5, 1, 2, 9, 2, 9, 9, 8, 2, 1, 7, 0, 6, 8, 5, 3, 9, 3, 7, 4, 1, 7, 1, 7, 5, 2, 1, 8, 5, 6, 7, 7, 0, 9, 1, 3, 0, 5, 7, 3, 6, 2, 3, 9, 1, 3, 2, 3, 6, 7, 1, 3, 0, 7, 5, 0, 5, 4, 7, 0, 8, 0, 0, 2, 6, 3, 4, 7, 9
Offset: 1

Views

Author

Keywords

Examples

			2.3978952727983705440619435779651292998217068539374171752185677...
		

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A016739 Continued fraction.

Programs

  • Mathematica
    RealDigits[Log[11], 10, 120][[1]] (* Harvey P. Dale, Mar 09 2014 *)
  • PARI
    default(realprecision, 20080); x=log(11); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016634.txt", n, " ", d)); \\ Harry J. Smith, May 16 2009

Formula

log(11) = 2*Sum_{n >= 1} 1/(n*P(n, 6/5)*P(n-1, 6/5)), where P(n, x) denotes the n-th Legendre polynomial. The first 20 terms of the series gives the approximation log(11) = 2.3978952727(47...), correct to 10 decimal places. - Peter Bala, Mar 19 2024
Equals 2*(log 2+log 5 -log 3)+Sum_{k>=1} (-1)^k/(k*100^k). - R. J. Mathar, Jun 10 2024