cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A068461 Factorial, or factoradic, expansion of log(11) = Sum_{n>=1} a(n)/n!, with a(n) as large as possible.

Original entry on oeis.org

2, 0, 2, 1, 2, 4, 3, 3, 1, 2, 4, 0, 3, 13, 1, 12, 12, 13, 1, 16, 16, 0, 16, 12, 10, 9, 1, 23, 3, 22, 0, 28, 11, 14, 23, 16, 0, 14, 6, 1, 1, 14, 4, 25, 43, 0, 29, 10, 41, 19, 47, 14, 0, 51, 10, 47, 37, 45, 46, 56, 57, 45, 10, 32, 61, 15, 9, 67, 5, 9, 22, 25, 65, 56, 24, 12, 71, 9, 57
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Examples

			log(11) = 2 + 0/2! + 2/3! + 1/4! + 2/5! + 4/6! + 3/7! + 3/8! + 1/9! + ...
		

Crossrefs

Cf. A016634 (decimal expansion), A016739 (continued fraction).
Cf. A007514 vs. A075874 for factoradic expansion.
Cf. A067882 (log(2)), A322334 (log(3)), A322333 (log(5)), A068460 (log(7)).

Programs

  • Magma
    SetDefaultRealField(RealField(250));  [Log(11)] cat [Floor(Factorial(n)*Log(11)) - n*Floor(Factorial((n-1))*Log(11)) : n in [2..80]]; // G. C. Greubel, Dec 05 2018
    
  • Mathematica
    With[{b = Log[11]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Dec 05 2018 *)
  • PARI
    vector(30, n, if(n>1, t=t%1*n, t=log(11))\1) \\ Increase realprecision (e.g., \p500) to compute more terms. - M. F. Hasler, Nov 25 2018
    
  • PARI
    default(realprecision, 250); b = log(11); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Dec 05 2018
    
  • Sage
    def a(n):
        if n==1: return floor(log(11))
        else: return expand(floor(factorial(n)*log(11)) - n*floor(factorial(n-1)*log(11)))
    [a(n) for n in (1..80)] # G. C. Greubel, Dec 05 2018

Extensions

Name edited and keyword cons,easy removed by M. F. Hasler, Nov 26 2018

A016739 Continued fraction for log(11).

Original entry on oeis.org

2, 2, 1, 1, 18, 2, 2, 7, 1, 6, 1, 1, 4, 1, 32, 4, 1, 1, 1, 3, 1, 1, 1, 2, 1, 4, 1, 1, 3, 1, 43, 4, 1, 1, 1, 25, 3, 2, 17, 4, 2, 1, 2, 1, 3, 1, 1, 89, 5, 1, 1, 1, 3, 1, 1, 2, 15, 3, 1, 49, 1, 1, 2, 35, 23, 1, 7, 2, 2, 3, 1, 2, 2, 1, 74, 1, 2, 3, 2, 1, 6, 1, 36, 4
Offset: 0

Views

Author

Keywords

Examples

			2.39789527279837054406194357... = 2 + 1/(2 + 1/(1 + 1/(1 + 1/(18 + ...)))). - _Harry J. Smith_, May 16 2009
		

Crossrefs

Cf. A016634 (decimal expansion).

Programs

  • Magma
    ContinuedFraction(Log(11)); // G. C. Greubel, Sep 15 2018
  • Mathematica
    ContinuedFraction[Log[11], 100] (* G. C. Greubel, Sep 15 2018 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(log(11)); for (n=1, 20000, write("b016739.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 16 2009
    

Extensions

Offset changed by Andrew Howroyd, Jul 10 2024

A016645 Decimal expansion of log(22).

Original entry on oeis.org

3, 0, 9, 1, 0, 4, 2, 4, 5, 3, 3, 5, 8, 3, 1, 5, 8, 5, 3, 4, 7, 9, 1, 7, 5, 6, 9, 9, 4, 2, 3, 3, 0, 5, 8, 6, 7, 8, 9, 7, 2, 0, 6, 9, 8, 8, 2, 9, 7, 6, 7, 2, 4, 2, 9, 3, 3, 9, 2, 4, 7, 7, 1, 8, 6, 2, 3, 9, 6, 7, 2, 4, 5, 8, 8, 2, 9, 3, 1, 4, 2, 8, 6, 8, 0, 9, 1, 8, 0, 3, 4, 9, 9, 9, 0, 5, 3, 4, 7
Offset: 1

Views

Author

Keywords

Examples

			3.091042453358315853479175699423305867897206988297672429339247718623967....
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A016450 (continued fraction).

Programs

  • Mathematica
    RealDigits[Log[22],10,120][[1]] (* Harvey P. Dale, Aug 18 2014 *)
  • PARI
    default(realprecision, 20080); x=log(22); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016645.txt", n, " ", d)); \\ Harry J. Smith, May 17 2009

Formula

Equals A016634 + A002162. - R. J. Mathar, Jul 22 2025

A016667 Decimal expansion of log(44).

Original entry on oeis.org

3, 7, 8, 4, 1, 8, 9, 6, 3, 3, 9, 1, 8, 2, 6, 1, 1, 6, 2, 8, 9, 6, 4, 0, 7, 8, 2, 0, 8, 8, 1, 4, 8, 2, 4, 3, 5, 9, 7, 2, 7, 0, 7, 1, 2, 2, 6, 5, 7, 9, 2, 7, 6, 8, 3, 4, 5, 9, 9, 2, 7, 7, 2, 8, 1, 1, 7, 3, 6, 0, 8, 6, 7, 8, 5, 2, 6, 2, 6, 1, 4, 4, 2, 8, 6, 7, 8, 1, 3, 6, 1, 9, 9, 5, 4, 7, 2, 1, 6
Offset: 1

Views

Author

Keywords

Examples

			3.784189633918261162896407820881482435972707122657927683459927728117360....
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A016472 (continued fraction).

Programs

  • Mathematica
    RealDigits[Log[44],10,120][[1]] (* Harvey P. Dale, Nov 06 2013 *)
  • PARI
    default(realprecision, 20080); x=log(44); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016667.txt", n, " ", d)); \\ Harry J. Smith, May 21 2009

Formula

Equals 2*A002162 + A016634. - R. J. Mathar, Jun 07 2024

A016678 Decimal expansion of log(55).

Original entry on oeis.org

4, 0, 0, 7, 3, 3, 3, 1, 8, 5, 2, 3, 2, 4, 7, 0, 9, 1, 8, 6, 6, 2, 7, 0, 2, 9, 1, 1, 1, 9, 1, 3, 1, 6, 9, 3, 9, 3, 4, 7, 3, 0, 8, 2, 0, 8, 2, 0, 5, 9, 3, 4, 8, 9, 7, 1, 3, 1, 2, 1, 5, 6, 0, 0, 6, 0, 4, 7, 5, 2, 6, 1, 1, 6, 2, 0, 8, 9, 4, 4, 7, 7, 7, 0, 5, 1, 8, 8, 5, 8, 6, 0, 9, 5, 8, 1, 4, 4, 0
Offset: 1

Views

Author

Keywords

Examples

			4.007333185232470918662702911191316939347308208205934897131215600604752....
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A016483 (continued fraction).

Programs

  • Mathematica
    RealDigits[Log[55], 10, 120][[1]] (* Vincenzo Librandi, Jun 21 2015 *)
  • PARI
    default(realprecision, 20080); x=log(55); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016678.txt", n, " ", d)); \\ Harry J. Smith, May 22 2009

Formula

Equals A016628+A016634. - R. J. Mathar, Jun 07 2024
Showing 1-5 of 5 results.