A016634 Decimal expansion of log(11).
2, 3, 9, 7, 8, 9, 5, 2, 7, 2, 7, 9, 8, 3, 7, 0, 5, 4, 4, 0, 6, 1, 9, 4, 3, 5, 7, 7, 9, 6, 5, 1, 2, 9, 2, 9, 9, 8, 2, 1, 7, 0, 6, 8, 5, 3, 9, 3, 7, 4, 1, 7, 1, 7, 5, 2, 1, 8, 5, 6, 7, 7, 0, 9, 1, 3, 0, 5, 7, 3, 6, 2, 3, 9, 1, 3, 2, 3, 6, 7, 1, 3, 0, 7, 5, 0, 5, 4, 7, 0, 8, 0, 0, 2, 6, 3, 4, 7, 9
Offset: 1
Examples
2.3978952727983705440619435779651292998217068539374171752185677...
References
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..20000
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Index entries for transcendental numbers
Crossrefs
Cf. A016739 Continued fraction.
Programs
-
Mathematica
RealDigits[Log[11], 10, 120][[1]] (* Harvey P. Dale, Mar 09 2014 *)
-
PARI
default(realprecision, 20080); x=log(11); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016634.txt", n, " ", d)); \\ Harry J. Smith, May 16 2009
Formula
log(11) = 2*Sum_{n >= 1} 1/(n*P(n, 6/5)*P(n-1, 6/5)), where P(n, x) denotes the n-th Legendre polynomial. The first 20 terms of the series gives the approximation log(11) = 2.3978952727(47...), correct to 10 decimal places. - Peter Bala, Mar 19 2024
Equals 2*(log 2+log 5 -log 3)+Sum_{k>=1} (-1)^k/(k*100^k). - R. J. Mathar, Jun 10 2024