A016639 Decimal expansion of log(16) = 4*log(2).
2, 7, 7, 2, 5, 8, 8, 7, 2, 2, 2, 3, 9, 7, 8, 1, 2, 3, 7, 6, 6, 8, 9, 2, 8, 4, 8, 5, 8, 3, 2, 7, 0, 6, 2, 7, 2, 3, 0, 2, 0, 0, 0, 5, 3, 7, 4, 4, 1, 0, 2, 1, 0, 1, 6, 4, 8, 2, 7, 2, 0, 0, 3, 7, 9, 7, 3, 5, 7, 4, 4, 8, 7, 8, 7, 8, 7, 7, 8, 8, 6, 2, 4, 2, 3, 4, 5, 3, 3, 0, 7, 9, 8, 5, 6, 7, 4, 7, 5
Offset: 1
Examples
2.77258872223978123766892848583270627230200053744102101648272... - _Harry J. Smith_, May 17 2009
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..20000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Peter Bala, A continued fraction expansion for the constant log(16)
- Eric Weisstein's World of Mathematics, Madelung Constants.
- Index entries for transcendental numbers
Crossrefs
Programs
-
Magma
Log(16); // Vincenzo Librandi, Feb 20 2015
-
Mathematica
RealDigits[Log[16], 10, 120][[1]] (* Harvey P. Dale, Jun 12 2012 *)
-
PARI
default(realprecision, 20080); x=log(16); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016639.txt", n, " ", d)); \\ Harry J. Smith, May 17 2009, corrected May 19 2009
Formula
Equals 4*A002162.
Equals Sum_{k=1..4} (-1)^(k+1) gamma(0, k/4) where gamma(n,x) denotes the generalized Stieltjes constants. - Peter Luschny, May 16 2018
Equals -2 + Sum_{k>=1} H(k)*(k+1)/2^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, May 28 2021
Equals 1 + Limit_{n -> infinity} (1/n)*Sum_{k = 1..n} (2*n + k)/(2*n - k) = 2*( 1 + Limit_{n -> infinity} (1/n)*Sum_{k = 1..n} (n - k)/(n + k) ). - Peter Bala, Oct 10 2021
Equals 2 + 1/(1 + 1/(3 + 2/(4 + 6/(5 + 6/(6 + 12/(7 + 12/(8 + ... + n*(n-1)/(2*n-1 + n*(n-1)/(2*n + ...))))))))). Cf. A188859. - Peter Bala, Mar 04 2024