A016650 Decimal expansion of log(27).
3, 2, 9, 5, 8, 3, 6, 8, 6, 6, 0, 0, 4, 3, 2, 9, 0, 7, 4, 1, 8, 5, 7, 3, 5, 7, 1, 0, 7, 6, 7, 5, 7, 7, 1, 1, 3, 9, 4, 2, 4, 7, 1, 6, 7, 3, 4, 6, 8, 2, 4, 8, 3, 5, 5, 2, 0, 4, 0, 8, 3, 0, 0, 0, 9, 1, 2, 4, 8, 2, 8, 7, 9, 6, 5, 5, 8, 2, 6, 9, 0, 0, 6, 2, 0, 8, 4, 7, 2, 6, 4, 4, 4, 1, 1, 9, 6, 2, 6
Offset: 1
Examples
3.295836866004329074185735710767577113942471673468248355204083000912482... - _Harry J. Smith_, May 20 2009
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..20000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Index entries for transcendental numbers
Crossrefs
Cf. A016455 (continued fraction).
Programs
-
Mathematica
RealDigits[Log[27],10,120][[1]] (* Harvey P. Dale, May 07 2012 *)
-
PARI
default(realprecision, 20080); x=log(27); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016650.txt", n, " ", d)); \\ Harry J. Smith, May 20 2009
Formula
Log(27) = Integral_{x = 0..oo} sin(4*x)^3/x^2 dx. - Peter Bala, Nov 04 2019
From Peter Bala, Feb 27 2024: (Start)
Equals 4 - 2*Sum_{k >= 0} 1/((2*k + 1)*(2*k + 3)*4^k).
Continued fraction: 4 - 16/(24 - 96/(84 - 1440/(186 - ... - 16*n*(n + 1)(4*n^2 - 1)/((2*(n + 1)*(10*n + 11)) - ... )))). (End)
Equals 3*A002391. - R. J. Mathar, Jul 22 2025