cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A319232 Decimal expansion of Sum_{p = prime} 1/(p*log p)^2.

Original entry on oeis.org

6, 3, 7, 0, 5, 6, 1, 8, 4, 0, 7, 4, 6, 7, 6, 4, 3, 3, 0, 5, 9, 9, 6, 8, 5, 8, 5, 0, 4, 7, 8, 5, 2, 7, 6, 9, 4, 5, 7, 9, 8, 9, 6, 0, 7, 7, 1, 9, 9, 5, 3, 3, 6, 7, 0, 9, 6, 0, 1, 3, 7, 1, 0, 7, 5, 5, 8, 8, 3, 1, 6, 0, 4, 3, 3, 2, 7, 1, 5, 1, 6, 8, 3, 6, 7, 5, 3, 8, 3, 5, 9, 6, 6, 1, 3, 3, 1, 8, 1, 3, 1, 3, 8, 2, 7, 5
Offset: 0

Views

Author

R. J. Mathar, Sep 14 2018

Keywords

Comments

Obtained by expanding the formalism of arXiv:0811.4739 to double integrals over the Riemann zeta function.

Examples

			1/A016627^2 + 1/A016650^2 + 1/8.047189^2 + ... = 0.637056184074676....
		

Crossrefs

Programs

  • Mathematica
    digits = 106; precision = digits + 10;
    tmax = 500; (* integrand considered negligible beyond tmax *)
    kmax = 300; (* f(k) considered negligible beyond kmax *)
    InLogZeta[k_] := NIntegrate[(t - 2k) Log[Zeta[t]], {t, 2k, tmax}, WorkingPrecision -> precision, MaxRecursion -> 20, AccuracyGoal -> precision];
    f[k_] := With[{mu = MoebiusMu[k]}, If[mu == 0, 0, (mu/k^3)*InLogZeta[k]]];
    s = 0;
    Do[s = s + f[k]; Print[k, " ", s], {k, 1, kmax}];
    RealDigits[s][[1]][[1 ;; digits]] (* Jean-François Alcover, Jun 21 2022, after Vaclav Kotesovec *)
  • PARI
    default(realprecision, 200); s=0; for(k=1, 300, s = s + moebius(k)/k^3 * intnum(x=2*k,[[1], 1], (x-2*k)*log(zeta(x))); print(s)); \\ Vaclav Kotesovec, Jun 12 2022

Extensions

More terms from Vaclav Kotesovec, Jun 12 2022

A244641 Decimal expansion of the sum of the reciprocals of the pentagonal numbers (A000326).

Original entry on oeis.org

1, 4, 8, 2, 0, 3, 7, 5, 0, 1, 7, 7, 0, 1, 1, 1, 2, 2, 3, 5, 9, 1, 6, 5, 7, 4, 5, 3, 1, 2, 5, 4, 2, 1, 3, 8, 1, 6, 5, 8, 4, 0, 5, 4, 2, 5, 3, 7, 5, 5, 0, 7, 7, 7, 9, 6, 3, 4, 1, 9, 8, 0, 6, 5, 5, 2, 4, 3, 5, 9, 6, 9, 8, 5, 2, 9, 4, 7, 3, 0, 1, 6, 9, 3, 6, 7, 2, 2, 2, 7, 6, 2, 2, 9, 1, 3, 6, 0, 9, 7, 5, 0, 7, 6, 8
Offset: 1

Views

Author

Robert G. Wilson v, Jul 03 2014

Keywords

Examples

			1.482037501770111223591657453125421381658405425375507779634198065524359698529473...
		

Crossrefs

Decimal expansion of the sum of the reciprocals of the m-gonal numbers: A000038 (m=3), A013661 (m=4), this sequence (m=5), A016627 (m=6), A244639 (m=7), A244645 (m=8), A244646 (m=9), A244647 (m=10), A244648 (m=11), A244649 (m=12), A275792 (m=14).

Programs

  • Magma
    SetDefaultRealField(RealField(139)); R:= RealField(); 3*Log(3)-Pi(R)*Sqrt(3)/3; // G. C. Greubel, Mar 24 2024
    
  • Mathematica
    RealDigits[Sum[2/(3*n^2-n), {n,1,Infinity}], 10, 111][[1]]
    RealDigits[3*Log[3] - Pi*Sqrt[3]/3, 10, 140][[1]] (* G. C. Greubel, Mar 24 2024 *)
  • SageMath
    numerical_approx(3*log(3)-pi*sqrt(3)/3, digits=139) # G. C. Greubel, Mar 24 2024

Formula

Sum_{n>=1} 2/(3*n^2 - n).
Equals 3*log(3) - Pi*sqrt(3)/3 = A016650 - A093602. - Michel Marcus, Jul 03 2014
Equals 2*A294514. - Hugo Pfoertner, Apr 24 2025

A016455 Continued fraction for log(27).

Original entry on oeis.org

3, 3, 2, 1, 1, 1, 2, 2, 1, 4, 4, 1, 3, 10, 1, 4, 1, 5, 3, 5, 5, 1, 1, 1, 3, 108, 1, 7, 1, 1, 3, 3, 1, 1, 1, 8, 2, 1, 1, 1, 2, 3, 1, 3, 1, 7, 1, 1, 2, 12, 1, 50, 4, 3, 23, 3, 8, 3, 1, 5, 1, 4, 7, 1, 6, 1, 1, 5, 1, 1, 1, 1, 6, 15, 1, 2, 5, 2
Offset: 1

Views

Author

Keywords

Examples

			3.295836866004329074185735710... = 3 + 1/(3 + 1/(2 + 1/(1 + 1/(1 + ...)))). - _Harry J. Smith_, May 20 2009
		

Crossrefs

Cf. A016650 Decimal expansion. - Harry J. Smith, May 20 2009

Programs

  • Mathematica
    ContinuedFraction[Log[27],80] (* Harvey P. Dale, May 02 2012 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(log(27)); for (n=1, 20000, write("b016455.txt", n, " ", x[n])); } \\ Harry J. Smith, May 20 2009

A382778 Decimal expansion of 6*log(3)/(3*log(3) - 3).

Original entry on oeis.org

2, 2, 2, 8, 1, 4, 4, 7, 9, 5, 1, 4, 9, 4, 3, 2, 1, 5, 6, 0, 3, 9, 6, 2, 0, 6, 7, 4, 1, 5, 8, 5, 8, 5, 3, 2, 3, 3, 4, 6, 8, 9, 2, 4, 9, 0, 7, 8, 1, 5, 0, 1, 3, 5, 9, 1, 8, 8, 5, 6, 5, 3, 2, 7, 9, 8, 9, 9, 4, 6, 4, 4, 9, 3, 5, 9, 3, 4, 0, 1, 4, 5, 4, 5, 5, 6, 3, 5, 2, 3, 0, 4, 4, 7, 4, 9, 9, 4, 4, 6
Offset: 2

Views

Author

Stefano Spezia, May 11 2025

Keywords

Comments

Upper bound for the irrationality measure of 3-adic analog of zeta(3) (see Lai et al., 2025 at p. 3).

Examples

			22.2814479514943215603962067415858532334689249078...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[6Log[3]/(3Log[3]-3),10,100][[1]]

A280234 Decimal expansion of log(27)/log(27/4).

Original entry on oeis.org

1, 7, 2, 5, 9, 8, 2, 4, 5, 7, 8, 7, 8, 7, 1, 9, 1, 0, 8, 7, 1, 9, 0, 8, 5, 3, 1, 9, 4, 0, 6, 2, 0, 8, 5, 3, 6, 6, 5, 9, 6, 0, 2, 6, 6, 2, 0, 5, 9, 5, 4, 9, 4, 2, 7, 6, 7, 8, 7, 5, 2, 9, 0, 9, 1, 6, 0, 3, 5, 0, 9, 8, 6, 4, 8, 6, 6, 0, 6, 8, 9, 9, 2, 4, 3, 0, 1
Offset: 1

Views

Author

Keywords

Comments

Appears as an exponent in an upper bound on the number of partitions of a set into disjoint unions; related to the ASTRAL algorithm in phylogenetic reconstruction.

Examples

			1.72598245787871910871908531940620853665960266205954942767875290916035...
		

Crossrefs

Cf. A016627 (log(4)), A016650 (log(27)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Log(27)/Log(27/4); // G. C. Greubel, Oct 13 2018
  • Mathematica
    RealDigits[N[Log[27]/(Log[27/4]), 100]] [[1]] (* Vincenzo Librandi, Feb 24 2017 *)
  • PARI
    log(27)/log(27/4)
    

Extensions

More digits from Jon E. Schoenfield, Mar 15 2018
Showing 1-5 of 5 results.