cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A115361 Inverse of matrix (1,x)-(x,x^2) (expressed in Riordan array notation).

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Paul Barry, Jan 21 2006

Keywords

Comments

Row sums are the 'ruler function' A001511. Columns are stretched Fredholm-Rueppel sequences (A036987). Inverse is A115359.
Eigensequence of triangle A115361 = A018819 starting with offset 1: (1, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, 20, 20, ...). - Gary W. Adamson, Nov 21 2009
From Gary W. Adamson, Nov 27 2009: (Start)
A115361 * [1, 2, 3, ...] = A129527 = (1, 3, 3, 7, 5, 9, 7, 15, ...).
(A115361)^(-1) * [1, 2, 3, ...] = A115359 * [1, 2, 3, ...] = A026741 starting /Q (1, 1, 3, 2, 5, 3, 7, 4, 9, ...). (End)
This is the lower-left triangular part of the inverse of the infinite matrix A_{ij} = [i=j] - [i=2j], its upper-right part (above / right to the diagonal) being zero. The n-th row has 1 in column n/2^i, i = 0, 1, ... as long as this is an integer. - M. F. Hasler, May 13 2018
The rows are the reversed binary expansions of A127804. - Tilman Piesk, Jun 10 2025

Examples

			Triangle begins:
  1;
  1,1;
  0,0,1;
  1,1,0,1;
  0,0,0,0,1;
  0,0,1,0,0,1;
  0,0,0,0,0,0,1;
  1,1,0,1,0,0,0,1;
  0,0,0,0,0,0,0,0,1;
  0,0,0,0,1,0,0,0,0,1;
  0,0,0,0,0,0,0,0,0,0,1;
		

Crossrefs

Programs

  • Maple
    A115361 := proc(n,k)
        for j from 0 do
            if k+(2*j-1)*(k+1) > n then
                return 0 ;
            elif k+(2^j-1)*(k+1) = n then
                return 1 ;
            end if;
        end do;
    end proc: # R. J. Mathar, Jul 14 2012
  • Mathematica
    (*recurrence*)
    Clear[t]
    t[1, 1] = 1;
    t[n_, k_] :=
    t[n, k] =
      If[k == 1, Sum[t[n, k + i], {i, 1, 2 - 1}],
       If[Mod[n, k] == 0, t[n/k, 1], 0], 0]
    Flatten[Table[Table[t[n, k], {k, 1, n}], {n, 14}]] (* Mats Granvik, Jun 26 2014 *)
  • PARI
    tabl(nn) = {T = matrix(nn, nn, n, k, n--; k--; if ((n==k), 1, if (n==2*k+1, -1, 0))); Ti = T^(-1); for (n=1, nn, for (k=1, n, print1(Ti[n, k], ", ");); print(););} \\ Michel Marcus, Mar 28 2015
    
  • PARI
    A115361_row(n,v=vector(n))={until(bittest(n,0)||!n\=2,v[n]=1);v} \\ Yields the n-th row (of length n). - M. F. Hasler, May 13 2018
    
  • PARI
    T(n,k)={if(n%k, 0, my(e=valuation(n/k,2)); n/k==1<Andrew Howroyd, Aug 03 2018
    
  • Python
    # translation of Maple code by R. J. Mathar
    def a115361(n, k):
        j = 0
        while True:
            if k + (2*j - 1) * (k + 1) > n:
                return 0
            elif k + (2**j - 1) * (k + 1) == n:
                return 1
            else:
                j += 1  #  Tilman Piesk, Jun 10 2025

Formula

Number triangle whose k-th column has g.f. x^k*sum{j>=0} x^((2^j-1)*(k+1)).
T(n,k) = A209229((n+1)/(k+1)) for k+1 divides n+1, T(n,k) = 0 otherwise. - Andrew Howroyd, Aug 05 2018

A052492 Initial pile sizes that guarantee a win for player 2 in a variant of Fibonacci Nim where the players may not take one stone.

Original entry on oeis.org

2, 3, 4, 5, 6, 9, 10, 15, 16, 24, 25, 38, 39, 59, 60, 90, 91, 137, 138, 207, 208, 312, 313, 470, 471, 707, 708, 1062, 1063, 1595, 1596, 2394, 2395, 3593, 3594, 5391, 5392, 8088, 8089, 12134, 12135, 18203, 18204, 27306, 27307
Offset: 1

Views

Author

Felix Goldberg (sgefelix(AT)t2.technion.ac.il), Mar 16 2000

Keywords

Examples

			a(5)=6 because player 1 can't take 1 stone; if player 1 takes 2 stones or more, player 2 grabs the rest.
		

Crossrefs

Cf. A016741.

A129555 A054523 * A129372.

Original entry on oeis.org

1, 1, 1, 3, 0, 1, 2, 1, 0, 1, 5, 0, 0, 0, 1, 3, 3, 1, 0, 0, 1, 7, 0, 0, 0, 0, 0, 1, 4, 2, 0, 1, 0, 0, 0, 1, 9, 0, 3, 0, 0, 0, 0, 0, 1, 5, 5, 0, 0, 1, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Gary W. Adamson, Apr 20 2007

Keywords

Comments

Row sums = A002131: (1, 2, 4, 4, 6, 8, 8, 8, 13, 12, ...). Left column = A016741: (1, 1, 3, 2, 5, 3, 7, ...).

Examples

			First few rows of the triangle:
  1;
  1, 1;
  3, 0, 1;
  2, 1, 0, 1;
  5, 0, 0, 0, 1;
  3, 3, 1, 0, 0, 1;
  7, 0, 0, 0, 0, 0, 1;
  4, 2, 0, 1, 0, 0, 0, 1;
  9, 0, 3, 0, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Formula

A054523 * A129372 as infinite lower triangular matrices.
Showing 1-3 of 3 results.