cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016744 a(n) = (2*n)^4.

Original entry on oeis.org

0, 16, 256, 1296, 4096, 10000, 20736, 38416, 65536, 104976, 160000, 234256, 331776, 456976, 614656, 810000, 1048576, 1336336, 1679616, 2085136, 2560000, 3111696, 3748096, 4477456, 5308416, 6250000, 7311616, 8503056, 9834496, 11316496, 12960000, 14776336, 16777216
Offset: 0

Views

Author

Keywords

Comments

Suppose the vertices of a triangle are (S(n), S(n+j)), (S(n+2*j), S(n+3*j)) and (S(n+4*j), S(n+5*j)) where S(n) is the n-th square number, A000290(n). Then the area of this triangle will be a(j). A generalization follows: let P(k,n) = the n-th k-gonal number and suppose the vertices of a triangle are (P(k,n), P(k,n+j)), (P(k,n+2*j), P(k,n+3*j)) and (P(k,n+4*j), P(k,n+5*j)). Then the area of this triangle will be (2*k-4)^2*j^4. See also A141046 for k = 3. - Charlie Marion, Mar 26 2021

Crossrefs

Programs

Formula

G.f.: 16*x*(x+1)*(x^2+10*x+1)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
E.g.f.: 16*x*(1 + 7*x + 6*x^2 + x^3)*exp(x). - G. C. Greubel, Sep 15 2018
From Amiram Eldar, Oct 10 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi^4/1440 (conjecturally A258945).
Sum_{n>=1} (-1)^(n+1)/a(n) = 7*Pi^4/11520. (End)