A016752 a(n) = (2*n)^12.
0, 4096, 16777216, 2176782336, 68719476736, 1000000000000, 8916100448256, 56693912375296, 281474976710656, 1156831381426176, 4096000000000000, 12855002631049216, 36520347436056576, 95428956661682176, 232218265089212416, 531441000000000000, 1152921504606846976
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Crossrefs
Cf. A016764.
Programs
-
Magma
[(2*n)^12: n in [0..20]]; // Vincenzo Librandi, Sep 05 2011
-
Maple
A016752:=n->(2*n)^12: seq(A016752(n), n=0..30); # Wesley Ivan Hurt, Sep 15 2018
-
Mathematica
(2*Range[0,20])^12 (* or *) LinearRecurrence[{13,-78,286,-715,1287,-1716, 1716,-1287, 715, -286,78,-13,1},{0,4096,16777216,2176782336, 68719476736, 1000000000000, 8916100448256,56693912375296, 281474976710656, 1156831381426176, 4096000000000000, 12855002631049216, 36520347436056576}, 20] (* Harvey P. Dale, Apr 05 2018 *)
-
PARI
vector(30, n, n--; (2*n)^12) \\ G. C. Greubel, Sep 15 2018
Formula
From Amiram Eldar, Oct 11 2020: (Start)
Sum_{n>=1} 1/a(n) = 691*Pi^12/2615348736000.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1414477*Pi^12/5356234211328000. (End)