cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016756 a(n) = (2*n+1)^4.

Original entry on oeis.org

1, 81, 625, 2401, 6561, 14641, 28561, 50625, 83521, 130321, 194481, 279841, 390625, 531441, 707281, 923521, 1185921, 1500625, 1874161, 2313441, 2825761, 3418801, 4100625, 4879681, 5764801, 6765201, 7890481, 9150625, 10556001, 12117361, 13845841, 15752961, 17850625
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of ordered pairs of lattice points (vectors in R^2 with integer coordinates) that are in or on a square centered at the origin with side length 2*n. - Geoffrey Critzer, Apr 20 2013

Examples

			a(1) = 81 because there are 9 lattice points in or on the 2 x 2 square centered at the origin, so there are 9*9 =81 ordered pairs. - _Geoffrey Critzer_, Apr 20 2013
		

Crossrefs

Programs

Formula

From Wolfdieter Lang, Mar 12 2017: (Start)
G.f.: (1+76*x+230*x^2+76*x^3+x^4)/(1-x)^5; see row n=5 of A060187.
E.g.f.: (1 + 80*x + 232*x^2 + 128*x^3 + 16*x^4)*exp(x); see row n=4 of A154537. (End)
Sum_{n>=0} 1/a(n) = Pi^4/96 (A300707). - Amiram Eldar, Oct 10 2020
From Amiram Eldar, Jan 28 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = (cos(Pi/sqrt(2)) + cosh(Pi/sqrt(2)))/2.
Product_{n>=1} (1 - 1/a(n)) = Pi*cosh(Pi/2)/8. (End)