cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016758 a(n) = (2*n+1)^6.

Original entry on oeis.org

1, 729, 15625, 117649, 531441, 1771561, 4826809, 11390625, 24137569, 47045881, 85766121, 148035889, 244140625, 387420489, 594823321, 887503681, 1291467969, 1838265625, 2565726409, 3518743761, 4750104241, 6321363049, 8303765625, 10779215329, 13841287201, 17596287801
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A300709.

Programs

  • Magma
    [(2*n+1)^6: n in [0..30]]; // Vincenzo Librandi, Sep 07 2011
    
  • Mathematica
    (2*Range[0,20]+1)^6 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{1, 729,15625,117649,531441,1771561,4826809},20] (* Harvey P. Dale, Dec 26 2012 *)
  • PARI
    vector(30, n, n--; (2*n+1)^6) \\ G. C. Greubel, Sep 15 2018

Formula

a(0)=1, a(1)=729, a(2)=15625, a(3)=117649, a(4)=531441, a(5)=1771561, a(6)=4826809, a(n) = 7*a(n-1) -21*a(n-2) +35*a(n-3) -35*a(n-4) + 21*a(n-5) -7*a(n-6) +a(n-7). - Harvey P. Dale, Dec 26 2012
G.f.: (1 +722*x +10543*x^2 +23548*x^3 +10543*x^4 +722*x^5 +x^6)/(1-x)^7 . - R. J. Mathar, Jul 07 2017
Sum_{n>=0} 1/a(n) = Pi^6/960 (A300709). - Amiram Eldar, Oct 10 2020
From Amiram Eldar, Jan 28 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = cosh(Pi/2)*(cos(sqrt(3)*Pi/2) + cosh(Pi/2))/2.
Product_{n>=1} (1 - 1/a(n)) = Pi*cosh(sqrt(3)*Pi/2)/24. (End)