cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A016954 a(n) = (6n+3)^10.

Original entry on oeis.org

59049, 3486784401, 576650390625, 16679880978201, 205891132094649, 1531578985264449, 8140406085191601, 34050628916015625, 119042423827613001, 362033331456891249, 984930291881790849, 2446194060654759801, 5631351470947265625, 12157665459056928801
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Wesley Ivan Hurt, Aug 22 2016: (Start)
G.f.: 59049*(1 + 59038*x + 9116141*x^2 + 178300904*x^3 + 906923282*x^4 + 1527092468*x^5 + 906923282*x^6 + 178300904*x^7 + 9116141*x^8 + 59038*x^9 + x^10)/(1-x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>10.
a(n) = A008454(A016945(n)). (End)
From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016946(n)^5 = A016949(n)^2.
a(n) = 3^10*A016762(n).
Sum_{n>=0} 1/a(n) = 31*Pi^10/171421608960. (End)

A016750 a(n) = (2*n)^10.

Original entry on oeis.org

0, 1024, 1048576, 60466176, 1073741824, 10000000000, 61917364224, 289254654976, 1099511627776, 3570467226624, 10240000000000, 26559922791424, 63403380965376, 141167095653376, 296196766695424, 590490000000000, 1125899906842624, 2064377754059776, 3656158440062976
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A016762.

Programs

  • Magma
    [(2*n)^10: n in [0..20]]; // Vincenzo Librandi, Sep 05 2011
    
  • Maple
    A016750:=n->(2*n)^10: seq(A016750(n), n=0..30); # Wesley Ivan Hurt, Sep 15 2018
  • Mathematica
    Table[(2*n)^10, {n,0,30}] (* G. C. Greubel, Sep 15 2018 *)
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{0,1024,1048576,60466176,1073741824,10000000000,61917364224,289254654976,1099511627776,3570467226624,10240000000000},30]   (* Harvey P. Dale, May 11 2022 *)
  • PARI
    vector(30, n, n--; (2*n)^10) \\ G. C. Greubel, Sep 15 2018

Formula

G.f.: -1024*x*(1+x)*(x^8 + 1012*x^7 + 46828*x^6 + 408364*x^5 + 901990*x^4 + 408364*x^3 + 46828*x^2 + 1012*x + 1)/(x-1)^11. - R. J. Mathar, Jul 07 2017
From Amiram Eldar, Oct 11 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi^10/95800320.
Sum_{n>=1} (-1)^(n+1)/a(n) = 73*Pi^10/7007109120. (End)

A016834 a(n) = (4n+2)^10.

Original entry on oeis.org

1024, 60466176, 10000000000, 289254654976, 3570467226624, 26559922791424, 141167095653376, 590490000000000, 2064377754059776, 6278211847988224, 17080198121677824, 42420747482776576, 97656250000000000, 210832519264920576, 430804206899405824, 839299365868340224
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(4*n+2)^10, {n, 0, 20}] (* Amiram Eldar, Apr 21 2023 *)

Formula

From Amiram Eldar, Apr 21 2023: (Start)
a(n) = A016825(n)^10.
a(n) = 2^10*A016762(n).
Sum_{n>=0} 1/a(n) = 31*Pi^10/2972712960. (End)

A017338 a(n) = (10*n + 5)^10.

Original entry on oeis.org

9765625, 576650390625, 95367431640625, 2758547353515625, 34050628916015625, 253295162119140625, 1346274334462890625, 5631351470947265625, 19687440434072265625, 59873693923837890625, 162889462677744140625, 404555773570791015625, 931322574615478515625
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(10*n+5)^10: n in [0..10]]; // Vincenzo Librandi, Aug 02 2011
  • Mathematica
    (10 Range[0,20]+5)^10 (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{9765625,576650390625,95367431640625,2758547353515625,34050628916015625,253295162119140625,1346274334462890625,5631351470947265625,19687440434072265625,59873693923837890625,162889462677744140625},20] (* Harvey P. Dale, Jul 18 2021 *)

Formula

G.f.: -9765625*(x^10 + 59038*x^9 + 9116141*x^8 + 178300904*x^7 + 906923282*x^6 + 1527092468*x^5 + 906923282*x^4 + 178300904*x^3 + 9116141*x^2 + 59038*x + 1)/(x-1)^11. - Colin Barker, Nov 14 2012
From Amiram Eldar, Apr 18 2023: (Start)
a(n) = A017329(n)^10.
a(n) = 5^10 * A016762(n).
Sum_{n>=0} 1/a(n) = 31*Pi^10/28350000000000. (End)

A017122 a(n) = (8*n + 4)^10.

Original entry on oeis.org

1048576, 61917364224, 10240000000000, 296196766695424, 3656158440062976, 27197360938418176, 144555105949057024, 604661760000000000, 2113922820157210624, 6428888932339941376, 17490122876598091776, 43438845422363213824, 100000000000000000000, 215892499727278669824
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(8*n+4)^10: n in [0..15] ]; // Vincenzo Librandi, Jul 21 2011
  • Mathematica
    Table[(8*n + 4)^10, {n, 0, 20}] (* Amiram Eldar, Apr 25 2023 *)

Formula

G.f.: ( -1048576 - 61905829888*x - 9558966665216*x^2 - 186962048712704*x^3 - 950977987346432*x^4 - 1601272511725568*x^5 - 950977987346432*x^6 - 186962048712704*x^7 - 9558966665216*x^8 - 61905829888*x^9 - 1048576*x^10 ) / ( (x-1)^11 ). - R. J. Mathar, May 08 2015
From Amiram Eldar, Apr 25 2023: (Start)
a(n) = A017113(n)^10.
a(n) = 2^10*A016834(n) = 2^20*A016762(n).
Sum_{n>=0} 1/a(n) = 31*Pi^10/3044058071040. (End)
Showing 1-5 of 5 results.