A016792 a(n) = (3*n+2)^4.
16, 625, 4096, 14641, 38416, 83521, 160000, 279841, 456976, 707281, 1048576, 1500625, 2085136, 2825761, 3748096, 4879681, 6250000, 7890481, 9834496, 12117361, 14776336, 17850625, 21381376, 25411681, 29986576, 35153041, 40960000, 47458321, 54700816, 62742241, 71639296
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[(3*n+2)^4 : n in [0..30]]; // Vincenzo Librandi, Sep 29 2011
-
Mathematica
Table[(3n+2)^4,{n,0,100}] (* Mohammad K. Azarian, Jun 15 2016 *) LinearRecurrence[{5,-10,10,-5,1},{16,625,4096,14641,38416},30] (* Harvey P. Dale, Aug 02 2018 *)
Formula
From Ilya Gutkovskiy, Jun 16 2016: (Start)
G.f.: (16 + 545*x + 1131*x^2 + 251*x^3 + x^4)/(1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). (End)
From Amiram Eldar, Mar 31 2022: (Start)
Sum_{n>=0} 1/a(n) = PolyGamma(3, 2/3)/486. (End)