A017174 a(n) = (9*n + 1)^2.
1, 100, 361, 784, 1369, 2116, 3025, 4096, 5329, 6724, 8281, 10000, 11881, 13924, 16129, 18496, 21025, 23716, 26569, 29584, 32761, 36100, 39601, 43264, 47089, 51076, 55225, 59536, 64009, 68644
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[(9*n+1)^2: n in [0..40]]; // Vincenzo Librandi, Aug 25 2011
-
Mathematica
(9*Range[0,40] +1)^2 (* G. C. Greubel, Dec 28 2022 *) LinearRecurrence[{3,-3,1},{1,100,361},50] (* Harvey P. Dale, Feb 25 2024 *)
-
PARI
a(n)=(9*n+1)^2 \\ Charles R Greathouse IV, Jun 17 2017
-
SageMath
[(9*n+1)^2 for n in range(41)] # G. C. Greubel, Dec 28 2022
Formula
G.f.: x*(1 + 97*x + 64*x^2)/(1-x)^3. - Bruno Berselli, Aug 25 2011
From G. C. Greubel, Dec 28 2022: (Start)
a(2*n) = A016754(9*n).
a(2*n+1) = 4*A017222(n).
E.g.f.: (1 + 99*x + 81*x^2)*exp(x). (End)